

Katalog KTR ROTEX ® GS

KAT-KTGS-0913

Ideen verbinden, Technik nutzen

ROTEX® GS

spielfreie elastische Wellenkupplung

COUNTEX®

spielfreie Drehgeberkupplung

TOOLFLEX®

spielfreie drehsteife Metallbalgkupplung

RADEX®-NC

spielfreie drehsteife Servolamellenkupplung

Inhaltsverzeichnis

ROTEX® GS	
spielfreie Wellenkupplung	143
Anwendungsempfehlung	145
Technische Beschreibung	146
Anwendungsempfehlung	147
Technische Daten	148
Kupplungsauslegung	149
Nabenausführungen	152
Lagerprogramm	153
Standardbauart	154
Compact	155
Spannringnaben light Spannringnaben Stahl	156 157
Ausführung P nach DIN 69002	157
Spreiznabe für Hohlwellenverbindung	159
Ausbaukupplung Bauart A-H	160
DKM (doppelkardanisch)	161
Zwischenwellenkupplungen	162
Verlagerungen und Technische Daten	164
Verlagerungen	165
COUNTEX® spielfreie Drehgeberkupplung Anwendungsempfehlung Doppelkardanisch für Messantriebe	145 166
TOOLFLEX® Metallbalgkupplung Anwendungsempfehlung Technische Beschreibung Kupplungsauslegung Bauart S/M mit Feststellgewinde Bauart M mit Klemmnaben Bauart S mit Klemmnaben Bauart KN Bauart PI Bauart CF Basissortiment	145 167 168 169 170 171 172 173 174
RADEX®-NC Servolamellenkupplung Anwendungsempfehlung Technische Beschreibung Kupplungsauslegung Standardbauarten	145 176 177 178

Anwendungsempfehlung

Der Anwender hat die Wahl, welche spielfreie Wellenkupplung für einen Servoantrieb zum Einsatz kommt. Hierfür bietet KTR vier verschiedene Kupplungsbauarten an: ROTEX® GS, COUNTEX®, TOOLFLEX® und RADEX®-NC. Welches System das beste für den individuellen Anwendungsfall ist, hängt u. a. von der geforderten Drehsteifigkeit des Gesamtsystems ab.

ROTEX® GS spielfreie, elastische Klauenkupplung

- axial steckbar
- hohe Leistungsdichte
- Dämpfungseinstellung über verschiedene Elastomerhärten der Zahnkränze

Drehgeber, Minia	aturantriebe		+
Kugelgewindetri	ebe, Zahnriemenantriebe		
Spielarme/-freie	Getriebe		
Hauptspindelant	riebe		

- kompakte Ausführung, einfache Montage/Demontage, elektrisch isolierend
- hohe Leistungsdichte, angepasste Drehsteifigkeit, Dämpfung von Schwingungen, für Gewindetriebe mit Steigung s < 40 (ansonsten Überprüfung durch KTR)
- hohe Leistungsdichte, einfache Blindmontage/Demontage, durchschlagsicher, für mittlere bis hohe Übersetzungen i ≥ 7,
 Temperaturbereich max. 80 °C
- hohe Leistungsdichte, gute Rundlaufeigenschaften der Spannringnaben, stoßdämpfend bei unterbrochenem Schnitt, erhöhte Genauigkeit der ROTEX® GS-P Ausführung für HSC Bearbeitung

COUNTEX® spielfreie Drehgeberkupplung

- axial steckbar
- doppelkardanisch
- temperaturbeständig

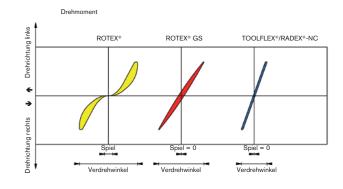
 doppelkardanische Ausführung zur Aufnahme größerer Verlagerungen, gleichbleibende Drehfedersteifigkeit auch bei höheren Temperaturen

TOOLFLEX® spielfreie, drehsteife Metallbalgkupplung

- kraftschlüssige Balg-Nabe-Verbindung
- reibschlüssige Klemmnaben

Drehgeber, Miniaturantriebe +	•
Kugelgewindetriebe, Zahnriemenantriebe	•
Spielarme/-freie Getriebe	•
Hauptspindelantriebe	•

- kompakte biegsame Kupplung mit geringen radialen Rückstellkräften
- geeignet wenn erhöhte Drehsteifigkeit gefordert wird, z. B. hohe Steigung bei Gewindespindelantrieben s ≥ 40; gleichbleibende Drehsteifigkeit bei hohen Temperaturen
- geeignet wenn erhöhte Drehsteifigkeit gefordert wird, z. B. Übersetzungen i < 7, gleichbleibende Drehsteifigkeit bei hohen Temperaturen
- hohe Drehsteifigkeit, für resonanzkritische Hauptspindelantriebe


RADEX®-NC spielfreie, drehsteife Servolamellenkupplung

- kurze Bauform
- erhöhte Drehsteifigkeit
- reibschlüssige Klemmnaben

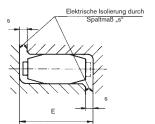
- doppelkardanische Ausführung zur Aufnahme größerer Verlagerungen
- geeignet wenn erhöhte Drehsteifigkeit gefordert wird, z. B. hohe Steigung bei Gewindespindeltrieben s ≥ 40, gleichbleibende Drehsteifigkeit bei hohen Temperaturen
 geeignet wenn erhöhte Drehsteifigkeit gefordert wird, z.B. Übersetzungen i < 7, gleichbleibende Drehsteifigkeit bei hohen
- geeignet wenn erh\u00f6hte Drehsteifigkeit gefordert wird, z.B. \u00dcbersetzungen i < 7, gleichbleibende Drehsteifigkeit bei hohen Temperaturen
- hohe Drehsteifigkeit, für resonanzkritische Hauptspindelantriebe, für hohe Drehmomente steht die Ausführung RADEX®-N zur Verfügung: TKN bis 280.000 Nm

Das nebenstehende Diagramm verdeutlicht den Einfluss der Kupplungen ROTEX®, ROTEX® GS, TOOLFLEX® und RADEX®-NC in Bezug auf Spiel und Verdrehwinkel. Auf Grund der hohen Drehsteifigkeit der RADEX®-NC und der TOOLFLEX® ist der Verdrehwinkel unter Drehmoment sehr gering. Im Gegensatz zur elastischen ROTEX® und spielfreien ROTEX® GS ist jedoch keine Dämpfung von Drehschwingungen etc. möglich.

Technische Beschreibung

Bei der ROTEX® GS handelt es sich um eine dreiteilige, unter Vorspannung spielfreie, axial steckbare Kupplung. Sie überzeugt selbst in kritischen Applikationen durch spielfreie Drehmoment- übertragung, dem jeweiligen Einsatz ideal angepaßter Steifigkeit und optimaler Schwingungsdämpfung. Bei der Verwendung dieses Prinzips ergeben sich besonders montagefreundliche und fertigungsoptimierte Einbaumöglichkeiten.

ROTEX® GS (Geradzahn Spielfrei)


Durch die gerade Verzahnung des unter Vorspannung eingebauten Zahnkranzes ergibt sich eine geringere Flächenpressung und damit eine erhöhte Steifigkeit des Kupplungssystems. Die elastischen Zähne, die Verlagerungen aufnehmen, werden im Innendurchmesser über einen Steg radial abgestützt. Hierdurch wird bei starken Beschleunigungen bzw. bei hohen Drehzahlen eine zu große Verformung nach innen bzw. nach außen verhindert. Dieses ist für die einwandfreie Funktion und Dauerhaltbarkeit von entscheidender Bedeutung.

Die wechseleitig angebrachten Warzen am Zahnkranz verhindern ein ganzflächiges Anliegen des Zahnkranzes an die Naben. Durch das Einhalten des Abstandsmaßes E wird die Verlagerungsfähigkeit der Kupplung gewährleistet.

Durch Einhalten des Spaltmaßes "s" wird neben einer hohen Lebensdauer der Kupplung auch die elektrische Isolierung gewährleistet. Diese gewinnt durch die zunehmende Präzision von Drehgebern und vorhandener Forderung nach elektromagnetischer Verträglichkeit (EMV) an Bedeutung.

Begrenzung durch konkave Nockenform bei hoher Drehzahl / Fliehkraft und Elastomervorspannung

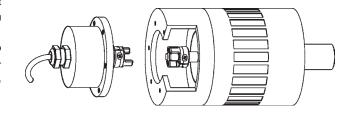
Ex-Schutz Einsatz

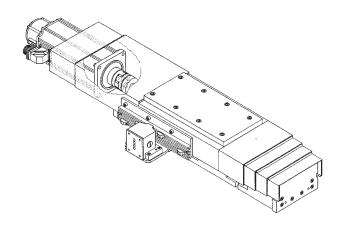
ROTEX® GS-Kupplungen eignen sich für die Kraftübertragung in Antrieben, die für den Einsatz in explosionsgefährdeten Bereichen vorgesehen sind. Die Kupplungen sind nach EG-Richtlinie 94/9/EG (ATEX 95) als Geräte der Kategorie 2G/2D beurteilt und bestätigt und somit für den Einsatz in explosionsgefährdeten Bereichen der Zone 1, 2, 21 und 22 geeignet. Bitte lesen Sie hierzu auch die Hinweise in der jeweiligen Baumusterprüfbescheinigung und der Betriebs- und Montageanleitung; einzusehen unter www.ktr.com.

Auslegung: Bei Einsatz im explosionsgefährdeten Bereich sind Spannringnaben (Klemmnaben ohne Passfeder nur für Kat. 3) so auszulegen, dass vom Anlagenspitzendrehmoment einschließlich aller Betriebsparameter zum Reibschluss- und Nenndrehmoment der Kupplung mindestens eine Sicherheit von s = 2 vorliegt.

				Zahnkran	Z	
7			Zul. Temperat	urbereich [°C]	11.6.1.60	
Zahnkranz Bezeich- nung Härte [Shore]	Kennzeichnung Farbe	Werkstoff	Dauertemperatur	max. Temp. kurzzeitig	Lieferbar für Kupplungs-Größe	Typische Einsatzbereiche
80 Sh-A-GS	*	Polyurethan	- 50 bis + 80	- 60 bis + 120	Gr. 5 bis 24	– Antriebe von elektrischen Meßsystemen
92 Sh-A-GS	1	Polyurethan	- 40 bis + 90	- 50 bis + 120	Gr. 5 bis 55	– Antriebe von elektrischen Meß- und Regelsystemen – Hauptspindelantriebe
95/98-Sh A-GS	*	Polyurethan	- 30 bis + 90	- 40 bis + 120	Gr. 5 bis 90	Positionierantriebe Hauptspindelantriebe Hohe Beanspruchung
64 Sh-D-H-GS		Hytrel	- 50 bis + 120	- 60 bis + 150	Gr. 7 bis 38	Planetengetriebe / spielfreie Getriebe Erhöhte Drehsteifigkeit / hohe Umgebungstemperaturen
64 Sh-D-GS	*	Polyurethan	- 20 bis + 110	- 30 bis + 120	Gr. 42 bis 90	- Erhöhte Beanspruchung - Erhöhte Drehsteifigkeit
72 Sh-D-H-GS	33	Hytrel	- 50 bis + 120	- 60 bis + 150	Gr. 24 bis 38	Sehr hohe Drehsteifigkeit / hohe Umgebungstemperatur Sehr hohe Beanspruchung
72 Sh-D-GS	3	Polyurethan	- 20 bis + 110	- 30 bis + 120	Gr. 42 bis 65	- Sehr hohe Drehsteifigkeit - Sehr hohe Beanspruchung

Die elastischen Zahnkränze für die Baureihe GS können in fünf verschiedenen Shorehärten, farblich eingespritzt, als torsionsweiches bis hartes Material geliefert werden. Durch die fünf zur Verfügung stehenden Zahnkränze mit unterschiedlicher Shorehärte ist es möglich, die ROTEX® GS hinsichtlich der Drehsteifigkeit und des Schwingungsverhaltens den individuellen Bedingungen eines Einsatzfalles auf einfache Art anzupassen. Die elastische Vorspannung variiert in Abhängigkeit der Kupplungsgröße, der Zahnkränze/Werkstoff und den Fertigungstoleranzen. Hieraus resultiert die axiale Steckkraft von leich tals Schiebesitz bzw. mit torsionsweichem Zahnkranz bis schwer mit großer Vorspannung bzw. torsionshartem Zahnkranz (siehe auch Montageanleitung KTR-N 45510 unter www.ktr.com).



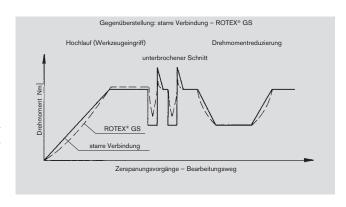

Anwendungsempfehlung

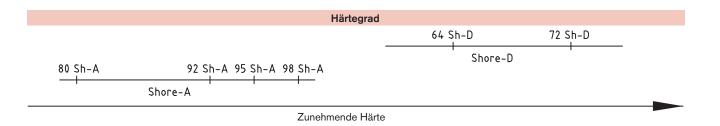
Mess- und Regeltechnik

In der Mess- und Regeltechnik wird eine hohe Drehsteifigkeit der Kupplung verlangt, um reproduzierbare Positionierungen zu erreichen.

Die auftretenden Drehmomente sind verhältnismäßig gering, so dass sich durch die Elastomervorspannung eine spielfreie, drehsteife Kraftübertragung ergibt. Um die Rückstellkräfte zu minimieren, wird für diesen Einsatzfall der 80 Sh-A-GS Zahnkranz empfohlen.

Steuerungs-Positionierungstechnik


ROTEX® GS, die Alternative zu drehsteifen Kupplungen


Drehsteife Welle-Welle-Verbindungen übertragen nicht nur das Drehmoment spielfrei und nachgiebig, sondern auch Drehmomentspitzen und Schwingungen. Der Vorteil der hohen Steifigkeit bei der Drehmomentübertragung wird bei schwingungskritischen Antriebssystemen schnell zu einem gravierenden Nachteil. Wo drehsteife Welle-Welle-Verbindungen ungünstiges Übertragungsverhalten aufweisen können, heißt die beste Alternative ROTEX® GS. Spielfrei, schwingungsdämpfend und trotzdem so drehsteif, dass bei richtiger Dimensionierung selbst bei hochdynamischen Servoantrieben keine Abstriche an die Genauigkeit gemacht werden müssen.

Hauptspindelantriebe

Bei hohen Drehmomenten im Bereich der Werkzeugmaschinen, z. B. direkt Spindelantriebe, wird zunächst eine geringe Verdrehung (unter Vorspannung)und somit von der Elastomerhärte abhängige Dämpfung erreicht. Spitzenspannungen und stoßartige Belastungen werden abgebaut bzw. der Resonanzbereich in unkritische Drehzahlbereiche verschoben.

Für Umfangsgeschwindigkeiten bis 50 m/s (bezogen auf den Außendurchmesser der Kupplung) empfehlen wir den Einsatz der ROTEX® GS Spannringnabe. Bei Umfangsgeschwindigkeiten höher als 50 m/s sollte die ROTEX® GS...P eingesetzt werden. Erfahrungen aus der Industrie liegen bis zu Umfangsgeschwindigkeiten von 80 m/s vor.

Zahnkranz aus Polyurethan	92 Shore-A	95/98 Shore-A	64 Shore-D
verhältnismäßige Dämpfung ψ [-]	0,80	0,80	0,75
Resonanzfactor V _R [-]	7,90	7,90	8,50

Technische Daten

Größe	Zahnkranz Shore-GS	Shore- Skala			/min] für N	labenausfi	ührung	Drehmon	nent [Nm]	statische Drehfeder- steife 1)	dynamische Drehfeder- steife 1)	Radial- federsteife C _r [N/mm]	Gewid	cht [kg]		rägheits- : J [kgm²]
	Zah Sho	कं छ	2.0 / 2.1 2.5 / 2.6	2.8 2.9	1.0 1.1	6.0 light ²⁾	6.0 P ²⁾	T _{KN}	T _{K max}	[Nm/rad]	[Nm/rad]	C _r [IV/mm]	pro Nabe 5)	Zahnkranz	pro Nabe 5)	Zahnkranz
	70	Α	2.0 / 2.0	2.9	1.1	ligiti		0,2	0,3	1,78	5	43				
_	80	Α		00000	45500			0,3	0,6	3,15	10	82	0.004	0,2	0,015	0,002
5	92	Α	38000	38000	47700			0,5	1,0	5,16	16	154	0,001	x 10 ⁻³	0,015	x 10 ⁻⁶
	98	Α	1					0,9	1,7	8,3	25	296	1			
	80	Α						0,7	1,4	8,6	26	114				
7	92	Α	27000	27000	34100			1,2	2,4	14,3	43	219	0,003	0,5	0,085	0,01
'	98	Α	27000	27000	34100			2,0	4,0	22,9	69	421	0,003	x 10 ⁻³	x 10 ⁻⁶	x 10 ⁻⁶
	64	D						2,4	4,8	34,3	103	630				
	80	Α						1,8	3,6	17,2	52	125				
9	92	Α	19000	19000	23800			3,0	6,0	31,5	95	262	0,01	1,7	0,48	0,085
9	98	Α	19000	19000	23600			5,0	10,0	51,6	155	518	0,01	x 10 ⁻³	x 10 ⁻⁶	x 10 ⁻⁶
	64	D						6,0	12,0	74,6	224	739				
	80	Α						3,0	6,0	84,3	252	274				
12	92	Α	15200	15200	19100			5,0	10,0	160,4	482	470	0,02	2,3	1,5	0,139
'2	98	Α	13200	13200	19100			9,0	18,0	240,7	718	846	0,02	x 10 ⁻³	x 10 ⁻⁶	x 10 ⁻⁶
	64	D						12,0	24,0	327,9	982	1198				
	80	Α						4,0	8,0	60,2	180	153				
14	92	Α	12700	12700	15900	32000	47700	7,5	15,0	114,6	344	336	0,02	4,7	2,8	0,509
	98	Α	12700	12700	10000	02000	47700	12,5	25,0	171,9	513	654	0,02	x 10 ⁻³	x 10 ⁻⁶	x 10 ⁻⁶
	64	D						16,0	32,0	234,2	702	856				
	80	Α						4,9	9,8	618	1065	582				
19	92	Α	9550	9550	11900	24000	35800	10,0	20,0	1090	1815	1120	0,09	7	19,5	1,35
13	98	Α] 3000	3000	11300	24000	00000	17,0	34,0	1512	2540	2010	0,03	x 10 ⁻³	x 10 ⁻⁶	x 10 ⁻⁶
	64	D						21,0	42,0	2560	3810	2930				
	92	Α						35	70	2280	4010	1480				
24	98	Α	6950	10400	8650	17000	26000	60	120	3640	5980	2560	0,2	0,02	81,9	6,7
2-7	64	D		10400	0000	17000	20000	75	150	5030	10896	3696	0,2	0,02	x 10 ⁻⁶	x 10 ⁻⁶
	72 ³⁾	D						97	194	9944	17095	5799				
	92	Α						95	190	4080	6745	1780				
28	98	Α	5850	8800	7350	15000	22000	160	320	6410	9920	3200	0,3	0,03	184,2	14,85
	64	D						200	400	10260	20177	4348	-,-	-,	x 10 ⁻⁶	x 10 ⁻⁶
	72 ³⁾	D						260	520	21526	36547	7876				
	92	Α	ļ					190	380	6525	11050	2350	ļ			
38	98	Α	4750	7150	5950	12000	17900	325	650	11800	17160	4400	0,6	0,05	542,7	39,4
	64	D						405	810	26300	40335	6474			x 10 ⁻⁶	x 10 ⁻⁶
	72 ³⁾	D						525	1050	44584	71180	11425				
	92	A						265	530	10870	15680	2430				
42	98	Α	4000		5000	10000	15000	450	900	21594	37692	5570	2,4	0,08	2802	85
	64	D	-			8050 4)		560	1120	36860	69825	7270	-		x 10 ⁻⁶	x 10 ⁻⁶
	72 ³⁾	D						728	1456	58600	93800	9766				
	92	A	-					310	620	12968	18400	2580			4500	105
48	98	A	3600		4550	9100	13600	525	1050	25759	45620	5930	3,3	0,09	4709	135
	64	D				7200 4)		655	1310	57630	99750	8274			x 10 ⁻⁶	x 10 ⁻⁶
	72 ³⁾	D						852	1704	80000	136948	11359				
	92	A	-					410	820	15482	21375	2980	-		0.400	000
55	98	A	3150		3950	6350 ⁴⁾	11900	685	1370	42117	61550	6686	5,1	0,12	9460	229
	72 ³⁾	D	-					825	1650	105730	130200	9248	-		x 10 ⁻⁶	x 10 ⁻⁶
		D						1072	2144	150000	209530	14883				
CE	95	A	0000		2500	ECEO A)	11000	940	1880	48520	71660	6418	6.7	0.0	15143	437
65	72 ³⁾	D	2800		3500	5650 ⁴⁾	11000	1175	2350	118510	189189	8870	6,7	0,2	x 10 ⁻⁶	x 10 ⁻⁶
		D						1527	3054	160000	310000	11826			20750	1170
75	95	A	2350		2950	4750 ⁴⁾	8950	1920	3840	79150	150450	8650	10,5	0,3	32750	1179
	95	D A						2400 3600	4800 7200	182320	316377	11923 10700			x 10 ⁻⁶	x 10 ⁻⁶
90	-		1900		2380	3800 4)	-			204500	302900		18,2	0,6	87099	3362 × 10-6
	64	D						4500	9000	429450	908700	14700			x 10 ⁻⁶	x 10 ⁻⁶

 $^{^{1)}}$ statische und dynamische Drehsteifigkeit bei 0,5 x T $_{\mbox{KN}}$

höhere Drehzahlen auf Anfrage
 Bei Einsatz des 72Sh-D Zahnkranes empfehlen wir den Einsatz von Naben in Stahl

Bei Einsatz des /ZSh-b Zaminkanes empenien wir den Einsatz von Naben in Gain.
 Spanningaben 6.0 in Stahl
 Naben mit mittlerer Bohrung Ausf. 1.0
 Die Kupplung muss so bemessen sein, dass die zulässige Kupplungsbeanspruchung in keinem Betriebszustand überschritten wird. (siehe Kupplungsauslegung Seite 149-151).
 Die angegebenen Drehmomente T_{KN} /T_K max. beziehen sich auf den Zahnkranz. Die Welle-Nabe-Verbindung ist kundenseitig zu überprüfen.

OTEX® GS OUNTEX® DOLFLEX®

ROTEX® GS spielfreie Wellenkupplung

spielireie Wellerikuppiul

Kupplungsauslegung

T_{K max}

 T_{R}

St

 S_d

 S_A

1. Begriffe für die Kupplungsauslegung

Kupplungsnennmoment [Nm] – Drehmoment, das im gesamten zulässigen Drehzahlbereich, unter Berücksichtigung der Betriebsfaktoren (S_t, S_d) dauernd übertragen werden kann.

 Kupplungsmaximalmoment [Nm] – Drehmoment, das während der gesamten Lebensdauer der Kupplung, unter Berücksichtigung der Betriebsfaktoren (S_t, S_d, S_A), als schwellende Beanspruchung ≥ 10⁵ bzw. als wechselnde Beanspruchung 5 · 10⁴ mal übertragen werden kann.

 Reibschlußmoment [Nm] – Drehmoment, das durch die reibschlüssige Welle-Nabe-Verbindung übertragen werden kann.

T_{AN} – dauernd auftretendes Antriebsmoment [Nm] nach Motorherstellerangaben

TAS – max. Antriebsmoment [Nm] nach Motorherstellerangaben – Spitzendrehmoment bei antriebsseitigem Drehmotorstoß, z. B. beim Beschleunigen bzw. Kippmoment des E-Motors.

TS - Spitzendrehmoment [Nm] - Spitzendrehmoment an der Kupplung. Berechnet aus max. Antriebsmoment TAS, Massenfaktor m_A bzw. m_L u. Betriebsfaktor S_A.

 Temperaturfaktor – Faktor, der, spez. bei erhöhter Temperatur, die geringere Belastbarkeit bzw. größere Verformung des Elastomerteiles unter Belastung berücksichtigt. Bei Temperaturen über 80 °C empfehlen wir den Einsatz der RADEX®-NC/TOOLFLEX®.

Drehsteifigkeitsfaktor – Faktor der je nach Einsatzgebiet die unterschiedliche Anforderung an die Drehsteifigkeit und Dauerfestigkeit der Kupplung berücksichtigt. Bei Einsatz des Zahnkranzes 64 Sh-D-GS und reversierendem Antrieb muss bei Kupplungen aus Aluminium S_d min. 4 gewählt werden. Für Positionierantriebe mit erhöhter Anforderung an Drehsteifigkeit (z. B. Getriebe mit geringer Übersetzung) empfehlen wir den Einsatz der TOOLFLEX® oder RADEX®-NC.

Betriebsfaktor – Faktor, der je nach Einsatz die auftretenden Stöße bzw. bei Positionierabtrieben Anläufe pro Minute berücksichtigt.

Massenfaktor der Antriebsseite (Lastseite) – Faktor, der die Massenverteilung bei antriebs- bzw. lastseitiger Stoßund Schwingungserregung berücksichtigt.

JA/JL - **Trägheitsmoment** der Antriebsseite/Trägheitsmoment der Lastseite

JK/JMot/JSp - Trägheitsmoment der Kupplung/ Trägheitsmoment des Motor/ Trägheitsmoment der Spindel

TA - Schraubenanzugsmoment [Nm]

2. Faktoren

Temperaturfaktor St für Zahnkränze aus Polyurethan						
	-30 °C +30 °C	+40 °C	+60 °C	+80 °C		
St	1,0	1,2	1,4	1,8		

Temperaturfaktor St für Zahnkränze aus Hytrel						
	-30 °C +30 °C	+40 °C	+60 °C	+80 °C	+100 °C	+120 °C
St	1,0	1,2	1,4	1,6	2,0	2,8

Made for Motion

Drehfedersteifigkeitsfaktor S _d						
Werkzeug- maschinen Hauptspindelantrieb	Positionierantriebe (x - y Achsen)	Drehgeber Winkelcodierer				
2 — 5*	3 — 8*	10 →				

*Bei Einsatz des 64 Sh-D-GS	oder 72 Sh-D-GS mindestens Faktor 4 oder Stahlnaben
verwenden.	

	Betriebsfaktor S _A	
Hauptspindelantrieb	Positionierantrieb*	SA
leichte Stöße	≤ 60	1,0
mittlere Stöße	≥60 ≤300	1,4
schwere Stöße	≥300	1,8

*Anäufe/Minute

3. Berechnungsformel

Die Kupplung muss so bemessen sein, dass folgende Bedingungen erfüllt sind.

Antriebsseitiger Stoß TS = TAS ● mA ● SA
Lastseitiger Stoß TS = TLS ● mL ● SL

 $\mathsf{m}_\mathsf{A} = \mathsf{J}_\mathsf{L} \, / \, (\mathsf{J}_\mathsf{A} \, + \, \mathsf{J}_\mathsf{L})$

 $m_L = J_A / (J_A + J_L)$

ROTEX® GS

spielfreie Wellenkupplung

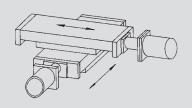
Kupplungsauslegung

4.1 Berechnungsbeispiel für Positionierantriebe

Gegeben: Anlagedaten Antriebsseite

Servomotor

Nennmoment $T_{AN} = 43 \text{ Nm}$


max. Antriebsmoment TAS = 144 Nm

Trägheitsmoment J_{Mot} = 108 ● 10⁻⁴ kgm²

Antriebswelle d = 32 k6 ohne Passfedernut

Umgebungstemperatur t = 40 °C \rightarrow S_t = 1,2

60 Anläufe / min \rightarrow S_A = 1,0

Kugelgewindetrieb

Anlagedaten Abtriebsseite

Kugelrollspindel JSP = 38 • 10⁻⁴ kgm²

Spindelsteigung s = 10 mm

Abtriebswelle d = 30 k6 ohne Passfedernut

Masse von Schlitten + Werkstück m_{Schl} = 1030 kg

Gefordert:

hohe Drehsteifigkeit \rightarrow S_d = 4

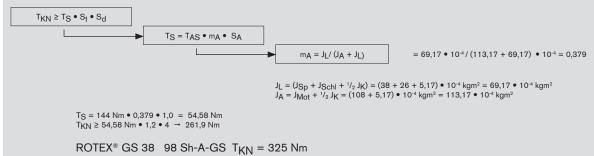
Vorauswahl:

ROTEX® GS Spannringnabe axial steckbare Klauenkupplung unter Vorspannung spielfrei, mit reibschlüssiger Welle-Nabeverbindung.

Trägheitsmoment von Schlitten und Werkstück reduziert auf die Antriebsachse.

$$J_{\text{Schl}} = m_{\text{Schl}} \bullet (s / (2 \bullet \pi))^2 [kgm^2]$$

$$J_{Schl} = 1030 \text{ kg} \bullet (0.01 \text{ m} / (2 \bullet \pi))^2 = 26 \bullet 10^{-4} \text{ kgm}^2$$


Kupplungsauswahl

Auslegung nach Nennmoment (Vorauswahl)

$$T_{KN} \ge T_{AN} \cdot S_t \cdot S_d$$

Kupplungsauswahl: ROTEX® GS 38 - 98 Sh-A-GS - T_{KN} 325 Nm mit Spannringnaben 6.0 light

Überprüfung des maximalen Antriebsmomentes

Überprüfung der Drehmomentübertragung Spannringnabe 6.0 light für Wellendurchmesser Ø30

Werte für T_R siehe Tabelle Katalogseite 156.
Übertragbares Drehmoment T_R Ø 30 H7/k6 = 443 Nm > 144 Nm ✓

Die Kupplung muss so bemessen sein, dass die zulässige Kupplungsbeanspruchung in keinem Betriebszustand überschritten wird

Kupplungsauslegung

4.2 Berechnungsbeispiel für Hauptspindelantriebe

Gegeben: Anlagedaten Antriebsseite

Servomotor

Bearveitungsmoment TAN = 154 Nm

max. Antriebsmoment $T_{AS} = 190 \text{ Nm}$

max. Drehzahl = 6000 1/min

Trägheitsmoment J_{Mot} = 0,316 kgm²

Antriebswelle d = 38 k6 ohne Passfedernut

Umgebungstemperatur t = $60 \, ^{\circ}\text{C} \rightarrow S_t = 1,4$

leichte Stöße \rightarrow S_A = 1,0

Anlagedaten Abtriebsseite

Trägheitsmoment vom Abtrieb J_L = 0,1094 kgm²

Abtriebswelle d = 30 k6 ohne Passfedernut

Gefordert:

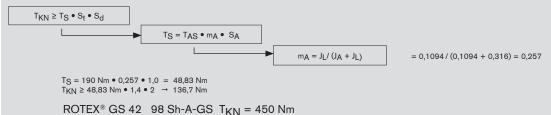
keine besonderen Anforderungen an die Drehsteifigkeit → S_d = 2

Vorauswahl:

ROTEX® GS Spannringnabe axial steckbare Klauenkupplung unter Vorspannung spielfrei, mit reibschlüssiger Welle-Nabeverbindung.

Kupplungsauswahl

Auslegung nach Nennmoment (Vorauswahl)


T_{KN} ≥ T_{AN} • S_t • S_d

T_{KN} ≥ 154 Nm • 1,4 • 2

T_{KN} ≥ 431,2 Nm

Kupplungsauswahl: ROTEX® GS 42 - 98 Sh-A-GS TKN 450 Nm mit Spannringnaben 6.0 light

Überprüfung des maximalen Antriebsmomentes

Überprüfung der Drehmomentübertragung Spannringnabe 6.0 light für Wellendurchmesser Ø30

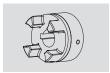
T_R > T_{AS}

Werte für T_R siehe Tabelle Katalogseite 156.

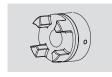
Übertragbares Drehmoment $T_R \varnothing 30 H7/k6 = 507 Nm > 190 Nm \checkmark$

Die Kupplung muss so bemessen sein, dass die zulässige Kupplungsbeanspruchung in keinem Betriebszustand überschritten wird

ROTEX® GS


spielfreie Wellenkupplung

Nabenausführungen


Bedingt durch den Einsatz der ROTEX® GS für die unterschiedlichsten Anwendungen und damit auch Einbausituationen steht dieses Kupplungssystem mit verschiedenen Nabenausführungen zur Verfügung.

Die verschiedenen Nabenausführungen lassen sich innerhalb einer Größe beliebig kombinieren.

Ausf. 1.0 mit Passfedernut und Feststellschraube

Formschlüssige Kraftübertragung zul. Drehmoment abhängig von der zul. Flächenpressung. Als spielfreie Kraftübertragung bei stark reversierendem Betrieb nicht geeignet.

Ausf. 1.1 ohne Passfedernut mit Feststellschraube

Kraftschlüssige Drehmomentübertragung. Geeignet für spielfreie Übertragung von sehr geringen Dreh-momenten. (Nur für ATEX Kat. 3)

Ausf. 2.0 Klemmnabe einfach geschlitzt ohne **Passfedernut**

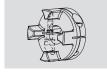
Reibschlüssige, spielfreie Welle-Nabe-Verbindung. Übertragbare Drehmomente abhängig vom Bohrungsdurchmesser. Ausf. 2.0 bis Größe 14 Standard. (Nur für ATEX Kat. 3)

Ausf. 2.1 Klemmnabe einfach geschlitzt mit **Passfedernut**

Formschlüssige Kraftübertragung mit zusätzlichem Reibschluß. Durch Reibschluß wird Umkehrspiel verhindert bzw. reduziert. Flächenpressung der Passfederverbindung wird verringert. Ausf. 2.1 bis Größe 14 Standard.

Ausf. 2.5 Klemmnabe zweifach geschlitzt ohne

Reibschlüssige, spielfreie Welle-Nabe-Verbindung. Übertragbare Drehmomente abhängig vom Bohrungsdurchmesser. Ausf. 2.5 ab Größe 19 Standard. (Nur für ATEX Kat. 3)


Ausf, 2.6 Klemmnabe zweifach geschlitzt mit

Formschlüssige Kraftübertragung mit zusätzlichem Reibschluß. Durch Reibschluß wird Umkehrspiel verhindert bzw. reduziert. Flächenpressung der Passfederverbindung wird verringert. Ausf. 2.6 ab Größe 19 Standard.

Ausf. 2.8 kurzbauende Klemmnabe C axial geschlitzt ohne Passfedernut

Reibschlüssige, spielfreie Welle-Nabe-Verbindung, gute Rundlaufeigenschaften. Übertragbare Dreh momente abhängig vom Bohrungsdurchmesser. Ausf. 2.8 ab Größe 24 Standard, Gr. 7-19 Ausf. 2.8 einfach geschlitzt (Nur für ATEX Kat. 3)

Ausf. 2.9 kurzbauende Klemmnabe C axial geschlitzt mit Passfedernut

Formschlüssige Kraftübertragung mit zusätzlichem Reibschluß. Flächenpressung der Passfederverbindung wird verringert. Ausf. 2.9 ab Größe 24 Standard; Gr. 7-19 Ausf. 2.9 einfach geschlitzt.

Ausf. 6.0 Spannringnabe

Integrierte reibschlüssige Welle-Nabe-Verbindung zur Übertragung höherer Drehmomente. Elastom seitige Verschraubung. Drehmomentangabe und Abmessungen siehe Seite 156/157. Geeignet für hohe Drehzahlen.

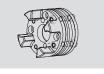
Ausf. 6.0 P Präzisions-Spannringnabe

Funktionsprinzip wie Ausf. 6.0, jedoch hochpräzise Bearbeitung mit geringfügigen baulichen Abweichungen. Siehe Seite 158.

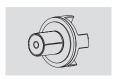
Ausf. 7.5 DH-Klemmnabe ohne Passfedernut für doppelkardanische Verbindungen

Reibschlüssige, spielfreie Welle-Nabe-Verbindung zur radialen Kupplungsmontage. Übertragbare Drehmomente abhängig vom Bohrungsdurchmesser. Drehmomentangabe siehe Seite 162.

Ausf. 7.6 DH-Klemmnabe mit Passfedernut für doppelkardanische Verbindungen


Formschlüssige Welle-Nabe-Verbindung mit zusätzlichem Reibschluss zur radialen Kupplungsmontage. Durch Reibschluss wird Umkehrspiel verhindert bzw. reduziert. Flächenpressung der Passfederverbindung wird verringert.

Ausf. 7.9 H-Klemmnabe mit Passfedernut für einfachkardanische Verbindung


Ausf. 7.8 H-Klemmnabe ohne Passfedernut einfachkardanische Verbindung

Sonderausführungen nach Kundenangabe

Ausf. 6.5 Spannringnabe

Ausführung wie 6.0, jedoch nur Spannschrauben von außen. Zum Beispiel zur radialen Zwischenrohr demontage. (Sonderausführung)

Ausf. 9.0 Spreiznabe

Reibschlüssige Verbindung für Hohlwelle. Die übertragbaren Drehmomente sind abhängig vom Bohrungsdurchmesser und der Hohlwelle

Lagerprogramm

Supplication with a proper content of the pr			Ferti	gbol	hrur	ıg [r	nm]	nac	h IS	O-P	ass	ung	H7	/ Pa	essf	eder	nute	e mi	t Ge	win	de r	nach	DIN	l 68	85 E	3l. 1	- JS	9				
Change School Change School Change C	Größe	Nabenaus-																														
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Grobe	führung	gebohrt	Ø2	Øз	Ø4	Ø5	Ø6		Ø7	Ø8	Ø9	Ø9,5	Ø10	Ø11	Ø12	Ø14	Ø15	Ø16	Ø18	Ø19	Ø20	Ø22	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42
9		1.1	•			•	_	-																								
9	7				•	•	•	•	•	•																						
9								_																								
9 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						_	-	_				•		_																		
21							_	_			_																					
10	9				•	•	•	_	•	•			•		•																	
10								•			•			•																		
11																																
12																																
2.1	10																															
1.0	12													_		+																
1.0														_		-																
1.1																			•													
14								_							_	-		Ť	Ť													
14						•	•		•	•		•	•			-	_	•	•													
28	14													_		_		_	_													
8.0 P 1.0 2.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3											_				_																	
8.0 P 1.0 2.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3		\vdash												•		•	•															
2.5																	•															
2.6		1.0	•											•	•	•	•	•	•	•	•	•	•	•								
28		2.5	•								•		•	•	•	•	•	•	•	•	•	•	•	•								
8.0 light 6.0 Stahl 6.0 PS 10.0		2.6	•								•			•	•	•	•	•	•	•	•	•		•								
6.0 Stahl	10	2.8	•									•		•	•		•	•	•	•	•	•		•								
6.0 P37.5 6.0 P 1.0	19	6.0 light												•		•	•	•	•	•	•	•										
8.0 P 1.0		6.0 Stahl													•				•		•											
1.0		6.0 P37.5																	•													
2.5		6.0 P																			•											
2.6		1.0	•													•	•	•	•	•	•	•	•	•	•	•						
2.8																-		•	_	_	_	_				_						
8.0 light 6.0 Stahl 6.0 P 6.0 Stahl 6.0 Stahl 6.0 Stahl 6.0 P 6.0 Stahl 6.0 Stahl 6.0 P 6.0 Stahl 6.0 Stahl 6.0 P 6.0 Stahl 6.0 P 6.0 Stahl 6.0 Stahl 6.0 P 6.0 Stahl 6.0 Stahl 6.0 P 6.0 Stahl 6.			•													•	•		-	•	_	_	•		_	-						
6.0 Ight 6.0 Stahl 6.0 Stahl 6.0 P 50	24																				_						•					
8.0 P 50 6.0 P 1.0 2.5 2.6 2.8 6.0 light 6.0 Stahl 6.0 P 1.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4		_															•	•	•	•	-	•			_	_						
8.0 P																					•		•		•	•						
1.0																								•								
2.5																						_					_		-			
2.6														-							_	_				_	_		_			
28		_																				_			_	_	-	_	_	_		
6.0 light 6.0 Stahl 6.0 P 1.0 2.5 2.6 38 6.0 light 6.0 Stahl 0.0 light 6.0 Stahl 0.0 light 0.0 Stahl 0.0 light 0.0 Stahl	00		•																-			-			_				_			
6.0 Stahl 6.0 P 1.0 2.5 2.6 38 6.0 light 6.0 Stahl	20																				-						_					
6.0 P		_																				_				_	_					
1.0																												_	_	_		
2.5																												_	_	_		
2.6		\vdash																										_			_	
2.8															_							•				•	•		_	_		
6.0 light		\vdash																							_			_	_		_	
6.0 Stahl	38																					_	•	•		_	•		_	•	_	•
																						Ė	Ė	Ė			_	_	-		_	Ė
		6.0 P																										•		•	•	

Kegelbohrungen für Fanuc-Motoren: GS 19 1:10 Ø 11 GS 24 1:10 Ø 16

							Fertigb	ohrunge	n [mm]							
Größe	Nabenaus- führung	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø48	Ø50	Ø55	Ø60	Ø65	Ø70	Ø80
42	6.0 light	•	•	•	•	•	•	•	•	•	•					
42	6.0 Stahl															
48	6.0 light			•	•	•	•	•	•	•		•				
48	6.0 Stahl			•	•	•	•	•	•	•						
55	6.0 Stahl					•	•	•	•	•	•	•	•			
65	6.0 Stahl							•	•	•	•	•		•	•	
75	6.0 Stahl										•	•	•	•	•	•
90	6.0 Stahl							Bohru	ingen auf A	nfrage						

■ = Vorgebohrte Klemmnaben ● = Standard-Bohrung ab Lager Ungebohrte Naben bis Größe 65 ab Lager lieferbar Weitere Abmessungen auf Anfrage

ROTEX® GS

spielfreie Wellenkupplung

Standardbauarten

- Unter Vorspannung spielfreie Wellenverbindung
- Kleine Baumaße geringe Schwungmomente
- Wartungsfrei, einfache optische Prüfung
- Verschiedene Elastomerhärten der Zahnkränze (s. S. 146)
- Fertigbohrung nach ISO-Passung H7 (ausgen. Klemmnabe), Passfedernute wahlweise ab Ø 6 mm nach DIN 6885 Bl. 1 - JS9 erhältlich
- (Ex) -Schutz beurteilt und bestätigt nach EG-Richtlinie 94/9/EG (Naben ohne Passfedernut nach Kategorie 3)

Ausf. 2.0 1-fach geschlitzte Klemmnabe ohne Passfedernut (nur für ATEX Kat. 3), Drehmoment abhängig vom Bohrungs-Ø. Ausf. 2.1 1-fach geschlitzte Klemmnabe mit Passfedernute Ausf. 2.5 2-fach geschlitzte Klemmnabe ohne Passfedernut (nur für ATEX Kat. 3) Drehmoment abhängig vom Bohrungs-Ø.
Ausf. 2.6 2-fach geschlitzte Klemmnabe mit Passfedernut

	ROTEX	® GS S	Standar	dbauar	ten	Größ	Be 5 b	is 38	Nabe	nwer	kstof	f Alur	niniur	n/Gr	öße 42 b	is 90 Na	abenw	erksto	off Sta	hl	
Größe	T _{KN} [Nm] für		e Fertigbo abenausfü	hrung Ød ihrung				Ak	omessur	ngen [m	m]				DIN EN I	schraube SO 4029 sf. 1.0/1.1	1	mschrau DTEX® 5 2.0		Nabena	
	95/98Sh-A ¹⁾	1.0-1.2	2.0/2.5	2.1/2.6 ³⁾	D	DH	dH	L	11;12	M;N	Е	b	s	a	G	t	M ₁	t ₁	е	DK	T _A [Nm]
5	0,9	6	5	5	-	10	_	15	5	-	5	4	0,5	4,0	M2	2,5	M1,2	2,5	3,5	11,4	2)
7	2,0	7	7	7	-	14	_	22	7	-	8	6	1,0	6,0	М3	3,5	M2	3,5	5,0	16,5	0,37
9	5,0	11	11	11	-	20	7,2	30	10	-	10	8	1,0	1,5	M4	5,0	M2,5	5,0	7,5	23,4	0,76
12	9,0	12	12	12	-	25	8,5	34	11	-	12	10	1,0	3,5	M4	5,0	МЗ	5,0	9,0	27,5	1,34
14	12,5	16	16	16	-	30	10,5	35	11	-	13	10	1,5	2,0	M4	5,0	МЗ	5,0	11,5	32,2	1,34
19	17	24	24	24	-	40	18	66	25	-	16	12	2,0	3,0	M5	10	M6	11,0	14,5	46	10,5
24	60	28	28	28	-	55	27	78	30	-	18	14	2,0	3,0	M5	10	M6	10,5	20,0	57,5	10,5
28	160	38	38	38	-	65	30	90	35	-	20	15	2,5	4,0	M8	15	M8	11,5	25,0	73	25
38	325	45	45	45	-	80	38	114	45	-	24	18	3,0	4,0	M8	15	M8	15,5	30,0	83,5	25
42	450	55	50	45	85	95	46	126	50	28	26	20	3,0	4,0	M8	20	M10	18	32,0	93,5	69
48	525	62	55	55	95	105	51	140	56	32	28	21	3,5	4,0	M8	20	M12	21	36,0	105	120
55	685	74	68	68	110	120	60	160	65	37	30	22	4,0	4,5	M10	20	M12	26	42,5	119,5	120
65	940	80	70	70	115	135	68	185	75	47	35	26	4,5	4,5	M10	20	M12	33	45,0	124	120
75	1920	95	80	80	135	160	80	210	85	53	40	30	5,0	5,0	M10	25	M16	36	51,0	147,5	295
90	3600	110	90	90	160	200	104	245	100	62	45	34	5,5	6,5	M12	30	M20	40	60,0	192	580

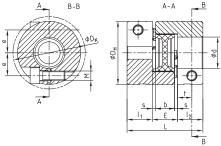
1) Weitere Zahnkränze/Auslegung s. S. 148-151 2) Kein TA definiert (Schlitzschraube) 3) Ab Ø65 Nut gegenüber der Klemmschraube 4) Klemmnabe 1-fach geschlitzt mit 2 x Klemmschraube M4

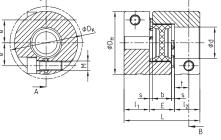
		Üb	ertragbar	e Reibscl	hlußmom	ente T _R [Nm] der l	Klemmnal	be ohne F	Passfeder	nut Ausf.	2.0 1)		
Größe	Ø2	Ø3	Ø4	Ø5	Ø6	Ø7	Ø8	Ø9	Ø10	Ø11	Ø12	Ø14	Ø15	Ø16
7		0,8	0,9	0,95	1,0	1,1								
9			2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8				
12			3,6	3,8	4,0	4,1	4,3	4,5	4,7	4,8	5,0			
14				4.7	4.8	5.0	5.1	5.3	5.5	5.6	5.8	6.1	6.3	6.5

				ÜŁ	ertr	agba	re R	eibs	chluí	3mo	ment	te T _R	[Nn	n] de	r Kle	mm	nabe	ohn	e Pa	ssfe	dern	ut A	usf. 2	2.5 ¹⁾					
Größe	Ø8	Ø10	Ø11	Ø14	Ø15	Ø16	Ø18	Ø19	Ø20	Ø22	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø48	Ø50	Ø55	Ø60	Ø65	Ø70	Ø75	Ø80	Ø90
19	25	27	27	29	30	31	32	32	34	30 4)	32 4)																		
24		34	35	36	38	38	39	40	41	42	43	45	46																
28				80	81	81	84	85	87	89	91	92	97	99	102	105	109												
38					92	94	97	98	99	102	104	105	109	112	113	118	122	123	126	130									
42									232	238	244	246	255	260	266	274	283	288	294	301	309	315							
48												393	405	413	421	434	445	454	462	473	486	494	514						
55															473	486	498	507	514	526	539	547	567	587	608				
65																507	518	526	535	547	559	567	587	608	627	648			
75																			1102	1124	1148	1163	1201	1239	1278	1316	1354	1393	
90																			1944	1980	2016	2040	2100	2160	2220	2280	2340	2400	2520

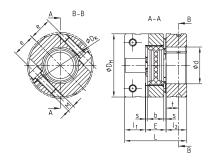
Bestellbeispiel:

ROTEX® GS 24	98 Sh-A-GS	d20	2.5 -	Ø 24	1.0 -	Ø 20
Kupplungsgröße	Zahnkranzhärte	Optional Bohrung im ZK	Naben- ausführung	Fertigbohrung	Naben- ausführung	Fertigbohrung


NEW



Compact



- Bis zu 1/3 kürzer
- Hohe Leistungsdichte Variante axial geschlitzt DBGM (ab Größe 24)
 - Gute Rundlaufgenauigkeit
 - Gleichförmige Kraftübertragung durch ungeschlitzten Nockenbereich
 - Verbesserte Wuchtgüte
- Fertigbohrung ab Ø 6 mm wahlweise auch mit Passfedernut nach DIN 6885 Bl.1 - JS9 erhältlich
- ⟨x⟩-Schutz beurteilt und bestätigt nach EG-Richtlinie 94/9/EG (Naben ohne Passfedernut nach Kategorie 3)

ROTEX® GS 7 - 19 Compact einfach geschlitzt Ausf. 2.8

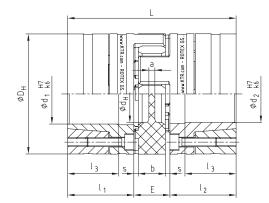
ROTEX® GS 24 - 38 Compact axial geschlitzt Ausf. 2.8

					ROTEX	GS Con	npact	Nabenwer	kstoff Al	uminium					
C	Zahnkranz I	Drehmomen	t T _{KN} [Nm] ¹)				Abı	messungen	[mm]					T. [NI1
Größe	92Sh-A	98Sh-A	64Sh-D	maximaler d	DH	DK	L	l ₁ , l ₂	Е	b	s	t	е	М	T _A [Nm]
		•	•			Einfach g	eschlitze N	Nabenausführu	ng 2.8/2.9						
7	1,2	2,0	2,4	7	14	16,6	18	5	8	6	1	2,5	5,0	M2	0,37
9	3,0	5,0	6	9	20	21,3	24	7	10	8	1	3,5	6,7	M2,5	0,76
12	5,0	9,0	12	12	25	26,2	26	7	12	10	1	3,5	8,3	МЗ	1,34
14	7,5	12,5	16	16 ²⁾	30	30,5	32	9,5	13	10	1,5	4,5	9,6	M4	2,9
19	10	17	21	24 2)	40	45,0	50	17	16	12	2	9	14,0	M6	10
						Axial ge	schlitze Na	abenausführun	g 2.8/2.9						
24	35	60	75	32	55	57,5	54	18	18	14	2	11	20,0	M6	10
28	95	160	200	35	65	69,0	62	21	20	15	2,5	12	23,8	M8	25
38	190	325	405	45	80	86,0	76	26	24	18	3	16	30,5	M10	49

				Über	tragb	are F	Reibs	chluß	Bmon	nente	T _R [Nm]	der K	lemn	nnab	e ohr	ne Pa	ssfec	dernu	t Aus	sf. 2.8	3 1)				
Größe	Ø3	Ø4	Ø5	Ø6	Ø7	Ø8	Ø9	Ø10	Ø11	Ø12	Ø14	Ø15	Ø16	Ø18	Ø19	Ø20	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45
										Einfa	ch ges	chlitze	Nabena	ausführ	ung 2.8	3				•						
7	0,8	0,9	1,0	1,0	1,1																					
9		1,9	2,0	2,1	2,2	2,3	2,4																			
12		3,4	3,6	3,7	3,9	4,1	4,2	4,4	4,6	4,7																
14			7,1	7,4	7,7	8,0	8,2	8,5	8,8	9,1	5,82)	5,92)	6,12)													
19						24,3	25,0	25,7	26,3	27,0	28,4	29,0	29,7	31,1	31,7	32,4	26,42)									
										Axia	al gesc	hlitze N	labenaı	ısführu	ng 2.8											
24								21	23	25	30	32	34	38	40	42	51	53	59	63	68					
28											54	58	62	70	74	78	93	97	109	116	124	136				
38												92	99	111	117	123	148	154	173	185	197	216	234	247	259	278

Weitere Zahnkränze/Auslegung s. S. 148-151
 Größe 14 mit Schraube M3 und Maß e=10.4; Größe 19 mit Schraube M5 und Maß e=15.5
 E Ohne Passfedernut
 Mit Passfedernut

Bestellbeispiel:


ROTEX® GS 38	Compact	98 Sh-A-GS	d28	2.8 -	Ø28	2.8 -	Ø45
Kupplungsgröße	Ausführung	Zahnkranzhärte	Optional	Naben-	Fertig-	Naben-	Fertig-
rappiangogroso	, taoramang	Zammanzmano	Bohrung im ZK	ausführung	bohrung	ausführung	bohrung

Spannringnaben light

- Drehelatische spielfreie Wellenkupplung mit integriertem Spannsystem
- Einsatz an z. B. Vorschub-/Hauptspindeln, Antriebe an Werkzeugmaschinen, Handlingseinheiten etc.
- Geringes Gewicht und niedriges Massenträgheitsmoment durch komplette ALU-Ausführung
- Einfache Montage durch innen liegende Spannschrauben und Blockmontage
- Hohe Reibschlußmomente
- Hohe Laufruhe, Einsatz bis 50 m/s Umfangsgeschwindigkeit
- Ex-Schutz beurteilt und bestätigt nach EG-Richtlinie 94/9/EG

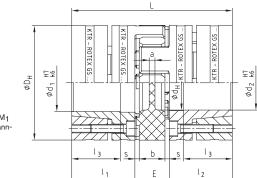
Abdruckgewinde M₁ zwischen den Spannschrauben

				RO	TEX®	GS Sp	annrii	ngnab	en ligh	nt Nab	en-/S	pannri	ingwei	rkstof	f Alum	inium			
Größe		anz Drehr KN [Nm]					А	bmessur	ngen [mn	n]						hrauben SO 4762		Gewicht pro Nabe bei	Massenträgheits- moment pro Nabe
	92 Sh-A	98Sh-A	64 Sh-D	maxi.d	DH ²⁾	dН	L	11; 12	lз	E	b	s	a	М	Anzahl z	T _A [Nm]	M ₁	max. Boh- rung [kg]	bei max. Bohrung [kg m²]
14	7,5	12,5	16,0	14	30	10,5	50	18,5	13,5	13	10	1,5	2,0	МЗ	4	1,34	МЗ	0,032	0,04 x 10 ⁻⁴
19	10	17	21	20	40	18	66	25	18	16	12	2,0	3,0	M4	6	3	M4	0,077	0,19 x 10 ⁻⁴
24	35	60	75	32	55	27	78	30	22	18	14	2,0	3,0	M5	4	6	M5	0,162	0,78 x 10 ⁻⁴
28	95	160	200	38	65	30	90	35	27	20	15	2,5	4,0	M5	8	6	M5	0,240	1,70 x 10 ⁻⁴
38	190	325	405	48	80	38	114	45	35	24	18	3,0	4,0	M6	8	10	M6	0,490	5,17 x 10 ⁻⁴
42	265	450	560	51	95	46	126	50	35	26	20	3,0	4,0	M8	4	25	M8	0,772	11,17 x 10 ⁻⁴
48	310	525	655	55	105	51	140	56	41	28	21	3,5	4,0	M10	4	49	M10	1,066	18,81 x 10 ⁻⁴

 $^{^{1)}}$ Weitere Zahnkränze/Auslegung s. S. 148-151 $^{2)}$ ØDH + 2 mm bei hohen Drehzahlen für Ausdehnung des Zahnkranzes

				Üb	ertragl	oare R	eibsch	lussm	omen	te T _R	[Nm] d	er Spa	nnring	gnabe	Ausf.	6.0 ligh	nt *				
Größe	Ø6	Ø10	Ø11	Ø14	Ø15	Ø16	Ø19	Ø20	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø48	Ø50	Ø55
14	5,1	8,5	10,7	24																	
19		16	19	39	47	34	54	62													
24				55	57	66	94	106	121	133	169										
28							139	130	198	216	244	281	248	302	324						
38								198	297	324	386	443	443	532	538	597	656	609			
42											443	507	533	637	689	761	750	856	963	974	
48												566	632	757	835	922	935	1066	1200	1125	1326

^{*} Die übertragbaren Drehmomente der Spannverbindung berücksichtigen das max. Passungsspiel bei Wellenpassung H7/k6. Bei größerem Passungsspiel verringert sich das Drehmoment. Als Wellenmaterial kann Stahl oder Sphäroguss mit einer Streckgrenze von ca. 250 N/mm² oder mehr verwendet werden. Für die Festigkeitsberechnung der Welle/Hohlwelle siehe KTR Norm 45510 auf unserer Homepage www.ktr.com.


Bestellbeispiel:	ROTEX® GS 24	98 Sh-A-GS	d20	6.0 ligh	t – Ø 24	6.0 light	t – Ø 20
	Kupplungsgröße	Zahnkranz- härte	Optional Bohrung im ZK	Naben- ausführung	Fertigbohrung	Naben- ausführung	Fertigbohrung

Spannringnaben Stahl

- Spielfreie Wellenkupplung mit integriertem Spannsystem
- Einsatz z. B. Getrieben und anderen Antrieben mit hohen Drehmomentstößen
- Hohe Laufruhe, Einsatz bis 40 m/s Umfangsgeschwindigkeit
- Hohe Reibschlußmomente (Auslegung bei Ex-Schutz-Einsatz beachten)
- Gute Montierbarkeit durch innen liegende Spannschrauben
- Fertigbohrung bis Ø 50 mm nach ISO-Passung H7 ab Ø 55 mm nach ISO-Passung G7
- &-Schutz beurteilt und bestätigt nach EG-Richtlinie 94/9/EG

Abdruckgewinde M₁ zwischen den Spannschrauben

					ROTE	K® GS	Spann	ringna	ben S	tahl Na	ben-/	Spann	ringwe	rkstof	f Stahl				
Größe		anz Drehr KN [Nm]					A	Abmessur	ngen [mm	1]					Spannscl DIN EN IS			Gewicht pro	Massenträg- heitsmoment pro
Grobe	98 Sh-A	64 Sh-D	72 Sh-D	maxi.d	DH ₃₎	dН	L	11;12	l3	Е	b	s	a	М	Anzahl z	T _A [Nm]	M ₁	Robrupa [ka]	Nabe bei max. Bohrung [kg m²]
19	17	21	-	20	40	18	66	25	18	16	12	2,0	3,0	M4	6	4,1	M4	0,179	0,44 x 10 ⁻⁴
24	60	75	97	28	55	27	78	30	22	18	14	2,0	3,0	M5	4	8,5	M5	0,399	1,91 x 10 ⁻⁴
28	160	200	260	38	65	30	90	35	27	20	15	2,5	4,0	M5	8	8,5	M5	0,592	4,18 x 10 ⁻⁴
38	325	405	525	48	80	38	114	45	35	24	18	3,0	4,0	M6	8	14	M6	1,225	12,9 x 10 ⁻⁴
42	450	560	728	51	95	46	126	50	35	26	20	3,0	4,0	M8	4	35	M8	2,30	31,7 x 10 ⁻⁴
48	525	655	852	55	105	51	140	56	41	28	21	3,5	4,0	M10	4	69	M10	3,08	52,0 x 10 ⁻⁴
55	685	825	1072	70	120	60	160	65	45	30	22	4,0	4,5	M10	4	69	M10	4,67	103,0 x 10 ⁻⁴
65	940 ²⁾	1175	1527	70	135	68	185	75	55	35	26	4,5	4,5	M12	4	120	M12	6,70	191,0 x 10 ⁻⁴
75	1920 ²⁾	2400	-	80	160	80	210	85	63	40	30	5,0	5,0	M12	5	120	M12	9,90	396,8 x 10 ⁻⁴
90	3600 ²⁾	4500	-	105	200	104	245	100	75	45	34	5,5	6,5	M16	5	295	M16	17,7	1136 x 10 ⁻⁴

1) Weitere Zahnkränze/Auslegung s. S. 148-151

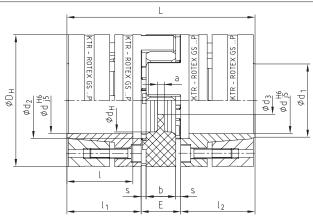
2) Werte für 95 Sh-A-GS

³⁾ ØDH + 2 mm bei hohen Drehzahlen für Ausdehnung des Zahnkranzes

DDH I	2 111111	Del IIO	Hell Di	CHZani	ien iui	Ausue	illulig	ues 20	aiiiniai	1203																		
					Ü	bertr	agba	re R	eibso	hlus	smo	men	te T _F	[Nm	n] de	r Spa	nnri	ngna	be A	usf.	6.0 S	tahl	*					
Größe	Ø10	Ø11	Ø14	Ø15	Ø16	Ø19	Ø20	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø48	Ø50	Ø55	Ø60	Ø65	Ø70	Ø80	Ø90	Ø95	Ø100	Ø105
19	27	32	69	84	57	94	110																					
24			70	87	56	97	114	116	133	192																		
28				108	131	207	148	253	285	315	382	330	433	503														
38							208	353	395	439	531	463	603	593	689	793	776											
42									358	398	483	416	547	536	625	571	704	851	865									
48											616	704	899	896	1030	962	1160	1379	1222	1543								
55													863	856	991	918	1119	1110	1247	1277	1672	1605	2008					
65															1446	1355	1637	1635	1827	1887	2429	2368	2930					
75																1710	2053	2059	2294	2384	3040	2983	3664	4148				
90																			3845	4249	4794	5858	5900	7036	8047	9247	9575	10845

* Die übertragbaren Drehmomente der Spannverbindung berücksichtigen das max. Passungsspiel bei Wellenpassung k6/Bohrung H7, ab Ø55 G7/m6. Bei größerem Passungsspiel verringert sich das Drehmoment. Für die Festigkeitsberechnung der Welle/Hohlwelle siehe KTR-Norm 45510 auf unserer Homepage www.ktr.com

Bestellbeispiel:

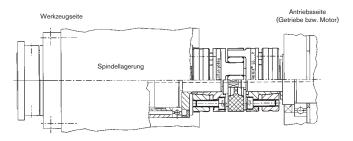

ROTEX® GS 24	98 Sh-A-GS	d20	6.0 Stahl	Ø24	6.0 Stahl	Ø20
Kupplungsgröße	Zahnkranz- härte	Optional Bohrung im ZK	Naben- ausführung	Fertigbohrung	Naben- ausführung	Fertigbohrung

Ausführung P nach DIN 69002

- Spielfreie, hochpräzise Wellenkupplung mit integriertem Spannsystem
- Entwickelt für Kurzbohrspindeln an Mehrspindelköpfen nach DIN 69002
- Einsatz an Hauptspindelantrieben mit hohen Drehzahlen, 50 m/s Umfangsgeschwindigkeit und höher (bitte Rücksprache mit KTR Technik)
- Hohe Reibschlußmomente (Auslegung bei Ex-Schutz-Einsatz beachten)
- Gute Montierbarkeit durch innen liegende Spannschrauben

Abdruckgewinde M₁ zwischen den Spannschrauben

					RO	TEX®	GS A	usfüh	rung l	P Nab	en-/S	pann	ringw	erkst	off Sta	ahl			
Größe	Zahnkranz ment T _K	Drehmo- N [Nm] 1)	-13)	d ²⁾ DH ³⁾ dH L 1;1 ₂ 14* 32 10.5 50 18.5					ssunger	· ·						Übertragba- res Drehmo- ment TR bei Ød [Nm] ²⁾	Spann- schrauben T _A	Gewicht pro Nabe bei Bohrung Ød Norm [kg]	bei Bohrung Ø d Norm
_			-	- 1 1		L		'		b	S	a	d ₁	d ₂	dз		[Nm]	- 0-	[kgm²]
14 P	12,5	16	14*	32	10,5	50	18,5	15,5	13	10	1,5	2	17	17	8,5	25	1,89	0,08	0,011x10 ⁻³
19 P 37,5	14	17	16*	37,5	18	66	25	21	16	12	2	3	20	19	9,5	60	3,05	0,16	0,037x10 ⁻³
19 P	17	21	19*	40	18	66	25	21	16	12	2	3	23	22	9,5	71	3,05	0,19	0,046x10 ⁻³
24 P 50	43	54	24*	50	27	78	30	25	18	14	2	3	28	29	12,5	108	4,9	0,331	0,136x10 ⁻³
24 P	60	75	25*	55	27	78	30	25	18	14	2	3	30	30	12,5	170	8,5	0,44	0,201x10 ⁻³
28 P	160	200	35*	65	30	90	35	30	20	15	2,5	4	40	40	14,5	506	8,5	0,64	0,438x10 ⁻³
38 P	325	405	40*	80	38	114	45	40	24	18	3	4	46	46	16,5	821	14	1,32	1,325x10 ⁻³
42 P	450	560	42	95	46	126	50	45	26	20	3	4	52	55	18,5	709	35	2,23	3,003x10 ⁻³
48 P	525	655	45	105	51	140	56	50	28	21	3,5	4	52	60	20,5	1340	69	3,09	5,043x10 ⁻³
55 P	685	825	50	120	60	160	65	58	30	22	4	4,5	55	72	22,5	1510	69	4,74	10,02x10 ⁻³

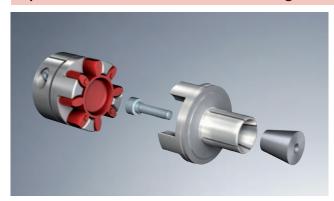

¹⁾ Weitere Zahnkränze/Auslegung s. S. 148-151

^{2) *} Genormte Spindelwellendurchmesser.

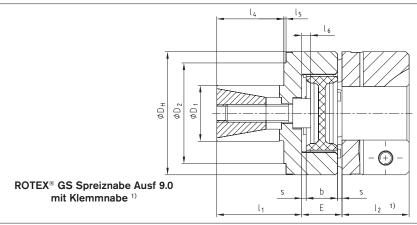
3) Ø DH + 2 mm bei hoher Drehzahl für Ausdehnung des Zahnkranzes

Für die Festigkeitsberechnung der Welle/Hohlwelle siehe KTR-Norm 45510 auf unserer Homepage www.ktr.com)

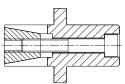
Zuordnung für Kurzspindeln														
Spindelantrieb ROTEX® GS P Abmessungen														
Spindelantrieb	Größe	d	DH	11;12	L	E								
25 x 20	14 P	14	32	18,5	50	13								
32k x 25	19 P37.5	16	37,5	25	66	16								
32g x 30	19 P	19	40	25	66	16								
40 x 35	24 P50	24	50	30	78	18								
50 x 45	24 P	25	55	30	78	18								
63 x 55	28 P	35	65	35	90	20								
80 x 75	38 P	40	80	45	114	24								



ROTEX® GS Ausführung P mit zentraler Kühlmittelzufuhr Kurzbohr- und Mehrspindelbohrköpfe


Bestellbeispiel:	ROTEX® GS 24	Р	98 Sh-A-GS	6.0 -	Ø25	6.0 -	Ø25
	Kupplungsgröße	Ausführung	Zahnkranzhärte	Naben- ausführung	Fertigbohrung	Naben- ausführung	Fertigbohrung

Spreiznabe für Hohlwellenverbindung


- Spielfreie Wellenkupplung mit intregiertem Spannsystem für Hohlwellenverbindungen
- Kurzbauend
- Elektrisch isolierend
- Schnelle Montage
- Gute Rundlaufgenauigkeit
- Mit verschiedenen Nabenausführungen kombinierbar
- Selbstzentrierende Spannverbindung

	ROTEX® GS Spreiznabe Spreiznabenwerkstoff Aluminium/Spannbolzenwerkstoff Edelstahl														
Größe		Drehmomen	t Zahnkranz	T _{KN} [Nm] ²	()					Abmes	sungen				
Grobe	80 Sh-A	92 Sh-A	98 Sh-A	64 Sh-D	72 Sh-D	D ₁	D ₂	DH	l ₁	14	l ₅	16	Е	b	s
9	1,8	3,0	5,0	6,0	-	10	-	20	20	11	-	0	10	8	1,0
12	3,0	5,0	9,0	12,0	-	10	20	25	19	14	1,5	2	12	10	1,0
14	4,0	7,5	12,5	16,0	-	12	24	30	18,5	12,5	3	2	13	10	1,5
19	4,9	10,0	17,0	21,0	-	20	35	40	28	20	1	0	16	12	2,0
24	-	35	60	75	97	25	45	55	38	30	1	4	18	14	2,0
28	-	95	160	200	260	35	55	65	44	36	1	5	20	15	2,5

 ¹⁾ Spreiznabe lässt sich auch mit anderen Nabenausführungen als Gegenseite kombinieren. I₂ abhängig von der Nabenausführung. Weitere Nabenausführungen siehe Seite 152
 ²⁾ Auslegung siehe Seite 148-151
 Übertragbare Reibschlußmomente für D₁ auf Anfrage (abhängig von der Hohlwelle)

Sonderausführung

ROTEX® GS Nabe mit CLAMPEX® KTR 150

ROTEX® GS 24	98 Sh-A-GS	d20	9.0 -	Ø 24	2.5 -	Ø 20
Kupplungsgröße	Zahnkranz- härte	Optional Bohrung im ZK	Naben- ausführung	D ₁	Naben- ausführung	Fertigbohrung

Ausbaukupplung Bauart A-H

Max. Fertigboh-rung Ød [mm]

20

28

38

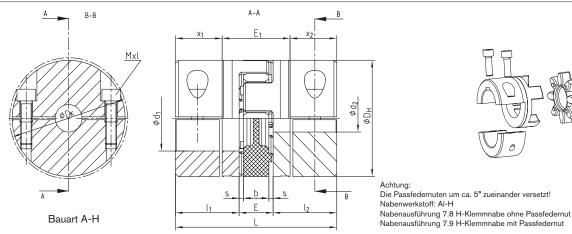
45

50

Größe

19

24


28

38

42

- Unter Vorspannung spielfreie Wellenverbindung
- Wartungsfrei, einfache optische Prüfung
- Verschiedene Elastomerhärten der Zahnkränze
- Montage/Demontage nur mittels 4 Schrauben
- Radial de-/montierbar, Austausch des Zahnkranzes ohne verschieben der An- und Abtriebsseite
- Fertigbohrung nach ISO-Passung H7, Passfedernute, ab Ø 6 mm nach DIN 6885 Bl. 1 - JS9
- Ex-Schutz beurteilt u. bestätigt nach EG-Richtlinie 94/9/EG (Ausf. 7.8 Halbschalenklemmnabe ohne Passfedernut nach Kategorie 3)

ROTEX® GS Bauart A-H Nabenw

12

14

15

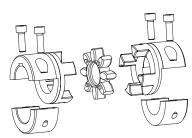
18

20

Abmessungen [mm]

2,0

2,0


2,5

3,0

80

83,5

33,0

M8x30

M10x30

49

erkst/	off Alumin	ium			
				ZylSchrauben D	IN EN ISO 4762
DH	DK	x ₁ /x ₂	E ₁	Mxl	T _A [Nm]
40	46	17,5	31	M6x16	10
55	57,5	22,0	34	M6x20	10
65	73	25,0	40	M8x25	25

								Technisc	he Daten								
Größe	Zahn- kranz- Shore-	ore-Skala	max. Drehzahl [1/min]	[N	noment m]	statische Dreh- feder- steife 2)	Gewicht pro Nabe bei max. Bohrung	Massenträg- heitsmoment J pro Nabe bei max. Bohrung	Größe	Zahn- kranz Shore-	Shore-Skala	max. Drehzahl [1/min]	[N	lm]	statische Dreh- feder- steife 2)	Gewicht pro Nabe bei max. Bohrung	Massenträg- heitsmoment J pro Nabe bei max. Bohrung
	GS 1)	Shore	[1/111111]	T _{KN}	T _{Kmax}	[Nm/rad]	[kg]	[kgm ²]		GS	Sho	[17//////	T _{KN}	T _{Kmax}	[Nm/rad]	[kg]	[kgm²]
	80	Α		4,9	9,8	618											
19	92	Α	9550	10,0	20,0	1090	77	19,6	38	92	Α	4750	190	380	6525	470	496
13	98	Α] 3000	17,0	34,0	1512	x 10 ⁻³	x 10 ⁻⁶		98	Α] 4700	325	650	11800	x 10 ⁻³	x 10 ⁻⁶
	64	D		21,0	42,0	2560				64	D		405	810	26300		
	92	Α		35	70	2280	161	77.0		92	Α		265	530	10870	1770	2409
24	98	Α	6950	60	120	3640	x 10⁻³	77,3 x 10 ⁻⁶	42	98	Α	4000	450	900	21594	x 10 ⁻³	x 10 ⁻⁶
	64	D		75	150	5030	X 10 -	X 10 -		64	D		560	1120	36860	X 10 -	*10-
	92	Α		95	190	4080	240	173									
28	98	Α	5850	160	320	6410	x 10 ⁻³	x 10 ⁻⁶									
	64	D		200	400	10260	x 10°	x 10°									

 $^{^{1)}}$ Weitere Zahnkränze/Auslegung siehe Seite 148-151 $^{2)}$ statische Drehsteifigkeit bei 0,5 x T $_{
m KN}$

11;12

25

30

35

45

50

16

18

20

24

26

66

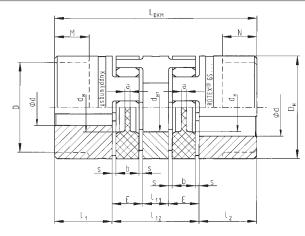
78

90

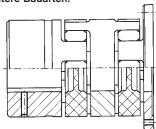
114

126

E	Bohru	ngsbe	reich	und z	ugeh	örige	übertı	ragba	re Rei	bschl	ussm	omen	te der	H-KI	emmr	abe c	hne F	Passfe	ederni	ut [mn	n] Aus	f. 7.8	
Größe	Ø8	Ø10	Ø11	Ø14	Ø15	Ø16	Ø18	Ø19	Ø20	Ø22	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø46	Ø48	Ø50
19	17	21	23	30	32	34	38	40	42														
24		21	23	30	32	34	38	40	42	47	51	53	59										
28				54	58	62	70	74	78	86	93	97	109	117	124	136	148						
38							70	74	78	86	93	97	109	117	124	136	148	156	163	175			
42										136	149	155	174	186	198	217	235	248	260	279	285	297	310


Bestellbeispiel:	ROTEX® GS 38	A-H	98 Sh-A-GS	7.8 -	Ø 38	7.9 –	Ø 30
	Kupplungsgröße	Ausführung	Zahnkranzhärte	Naben- ausführung	Fertigbohrung	Naben- ausführung	Fertigbohrung

DKM (doppelkardanisch)



- Spielfreie, doppelkardanische Wellenverbindung
- Doppelkardanisch somit Aufnahme größerer Radialverlagerungen möglich
- Axial steckbar einfache Blindmontage
- Wartungsfrei
- Einfache optische Prüfung
- Einsatz bis 30 m/s Umfangsgeschwindigkeit, bitte zusätzlich die Nabenausf. beachten
- Fertigbohrung nach ISO-Passung H7, (ausgenommen Klemmnabe), Passfedernute wahlweise ab Ø 6 mm nach DIN 6885 Bl.1 - JS9
- \overline{\omega}\)-Schutz beurteilt und bestätigt nach EG-Richtlinie 94/9/EG

		ROTEX	GS DK	M Zwi	schenst	ückwerk	stoff Alu	uminium	/Naben	werksto	ff abhän	gig von	der Aus	führung		
Größe		nz Dreh- KN [Nm] 1)							Abmessu	ngen [mm]						
	98 Sh-A	64 Sh-D	max. d 2)	D	DH	dН	dH1	11;12	M; N	111	l ₁₂	LDKM	Е	b	s	a
5	0,9	_	5	_	10	_	_	5	_	3	13	23	5	4	0,5	4,0
7	2,0	2,4	7	_	14	_	_	7	_	4	20	34	8	6	1,0	6,0
9	5,0	6,0	11	_	20	7,2	_	10	_	5	25	45	10	8	1,0	1,5
12	9,0	12,0	12	_	25	8,5	_	11	_	6	30	52	12	10	1,0	3,5
14	12,5	16,0	16	_	30	10,5	_	11	_	8	34	56	13	10	1,5	2,0
19	17,0	21,0	24	_	40	18,0	18	25	_	10	42	92	16	12	2,0	3,0
24	60	75	28	_	55	27,0	27	30	_	16	52	112	18	14	2,0	3,0
28	160	200	38	_	65	30,0	30	35	_	18	58	128	20	15	2,5	4,0
38	325	405	45	_	80	38,0	38	45	_	20	68	158	24	18	3,0	4,0
42	450	560	55	85	95	46	46	50	28	22	74	174	26	20	3,0	4,0
48	525	655	62	95	105	51	51	56	32	24	80	192	28	21	3,5	4,0
55	685	825	74	110	120	60	60	65	37	28	88	218	30	22	4,0	4,5

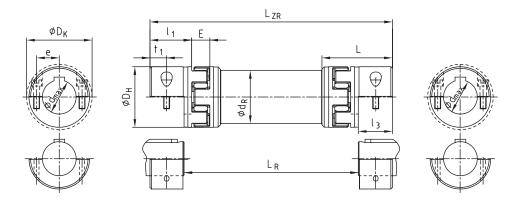
Weitere Bauarten:

ROTEX® GS - CF - DKM

Bestellbeispiel:	ROTEX® GS 24	DKM	92 Sh-A-GS	d25	1.0 -	Ø38	2.5 -	Ø25
	Kupplungsgröße	Ausführung	Zahnkranzhärte	Optional Bohrung im ZK	Naben- ausführung	Fertigbohrung	Naben- ausführung	Fertigbohrung

Weitere Zahnkränze/Auslegung siehe Seite 148-151
 abhängig von der Nabenausführung, Nabenausführungen Seite 152

ROTEX® GS


spielfreie Wellenkupplung

Zwischenwellenkupplungen

- Einsatz mit Hubspindelelementen, in Handlingsgeräten, Portalrobotern etc.
- Einfache, radiale Kupplungsmontage durch geteilte Kupplungsnabe, Austausch der Zahnkränze ohne Verschieben der An- und Abtriebsseite
- Längen sind drehzahl- und größenabhängig, bis zu 4 m ohne Zwischenlagerung möglich
- Geringes Massenträgheitsmoment durch Einsatz von Aluminium
- Auch mit anderen Nabenformen kombinierbar
- Fertigbohrung nach ISO-Passung H7, Passfedernute nach DIN 6885 Bl. 1 - JS9

			ROTE	X® GS E	Bauart Z	R3 Nab	enwerk	stoff Al	uminiun	n/Zwisc	henroh	rwerkst	off Alun	ninium			
								Abm	essungen	[mm]							
Größe	mindest	und maxi-							Allgemein							ZylSo	chraube
Grobe	male Fert	igbohrung						L	R	L ₂	ZR					DIN EN I	SO 4762
	d _{min} .	d _{max.}	DH	11	L	lз	E	min.	max.	min.	max.	dR	DΚ	t ₁	е	8.8	T _A [Nm]
14	5	16	30	18,5	36,0	14,5	13	72	2971	101	3000	28	32,5	7,5	11,5	M3	1,34
19	8	20	40	25	49,0	17,5	16	98	2965	133	3000	40	46	8,0	14,5	M6	10
24	10	28	55	30	59,0	22,0	18	113	3456	157	3500	50	57,5	10,5	20	M6	10
28	14	38	65	35	67,0	25,0	20	131	3950	181	4000	60	73	11,5	25	M8	25
38	18	45	80	45	83,5	33,0	24	163	3934	229	4000	70	83,5	15,5	30	M8	25
42	22	50	95	50	93,0	36,5	26	180	3927	253	4000	80	93,5	18,0	32	M10	49
48	22	55	105	56	100,0	39,5	28	202	3921	281	4000	100	105	18,5	36	M12	86

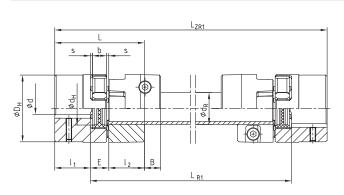
						Tech	nische Date	n der B	auart ZR3					
	Größe	Zahnkranz [T _{KN} [Orehmoment Nm] 1)	Tı	rägheitsmome [10 ⁻³ kgm²]		stat. Drehfeder- steife [Nm²/rad]		Zahnkranz [T _{KN} [Orehmoment [Nm] 1)	T	rägheitsmome [10 ⁻³ kgm²]		stat. Drehfeder- steife [Nm²/rad]
		98 Sh-A	64 Sh-D	Nabe 2)	ZR-Nabe	Rohr/Meter	ZW C ₂ 3)		98 Sh A	64 Sh D	Nabe 2)	ZR-Nabe	Rohr/Meter	ZW C ₂ 3)
NEW	14	12,5	16	0,00406	0,00238	0,088	858	38	325	405	0,50385	0,2572	2,972	29290,4
	19	17	21	0,02002	0,01304	0,329	3243,6	42	450	560	1,12166	0,5523	4,560	44929,7
	24	60	75	0,07625	0,04481	0,673	6631,8	48	525	655	1,87044	1,1834	9,251	91158,2
[28	160	200	0.17629	0.10950	1 199	118141					•		

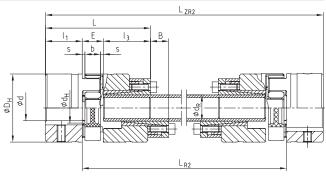
			Ü	bertr	aqba	re Re	ibscl	hluss	mom	ente	T _D [I	Nml c	ler D	H-Kle	emmi	nabe	ohne	Pas	sfede	rnut	Ausf.	. 7.5				
Größe	Ø5	Ø6	Ø8		Ø11							Ø22											Ø46	Ø48	Ø50	Ø55
14	2,6	3,1	4,2	5,2	5,7	7,3	7,8	8,3																		
19			17	21	23	30	32	34	38	40	42															
24				21	23	30	32	34	38	40	42	47	51	53	59											
28						54	58	62	70	74	78	86	93	97	109	117	124	136	148							
38									70	74	78	86	93	97	109	117	124	136	148	156	163	175				
42												136	149	155	174	186	198	217	235	248	260	279	285	297	310	
48												199	217	226	253	271	290	317	344	362	380	407	416	434	452	498

¹⁾ Weitere Zahnkränze/Auslegung s. S. 148-151

Nabenausführung 7.5 DH-Klemmnabe ohne Passfedernut
Nabenausführung 7.6 DH-Klemmnabe mit Passfedernut
Bei vertikaler Anwendung muss eine Abstützscheibe verwendet werden (bitte bei der Bestellung mit angeben)

Bestellbeispiel:	ROTEX® GS 24	ZR3	1200 mm	98 Sh A-GS	7.5 -	Ø24	7.5 -	Ø24
	Kupplungsgröße	Ausführung	Wellenab- standsmass (L _R)	Zahnkranzhärte	Naben- ausführung	Fertigbohrung	Naben- ausführung	Fertigbohrung


³⁾ Drehftedersteife bei 1m Länge des Zwischenrohrs, dabei ist LR_{Ohr} = LZR - 2 · L
Wir bitten bei Anfragen und Bestellungen das Wellenabstandsmaß LR, sowie die max. Drehzahl zur Überprüfung der biegekritischen Drehzahl anzugeben.
Das Zwischenrohr lässt sich auch mit anderen Nabenausführungen kombinieren, jedoch ist es dann nicht mehr radial demontierbar. Bitte bei der Bestellung das benötigte Wellenabstandsmaß



Zwischenwellenkupplungen

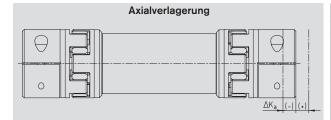
- Spielfreie Zwischenwellenkupplung
- Einsatz z. B. Verbindung von Hubspindelelementen, parallel laufender Lineareinheiten, Portalroboter, Handlingsgeräten
- Zur Überbrückung größerer Wellenabstände und max. Drehzahl von 1500 1/min
- Zwischenteil radial demontierbar
- Bauart ZR1 für Drehmomente bis max. Reibschlußmoment der Klemmnabe, Bauart ZR2 für höhere Drehmomente
- Fertigbohrung nach ISO-Passung H7, (ausgenommen Klemmnabe), Passfedernute, ab Ø 6 mm nach DIN 6885 Bl. 1 - JS9

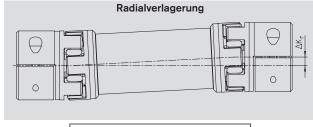
Bauart ZR2 Bauart ZR1

							ROT	EX® GS	Bauart	ZR1							
Größe	Zahnkrai moment T		maximale Fertig- bohrung					Abme	essungen [ı	mm]					Zyl. Schraube DIN EN ISO 4762 – 8.8		Reib- schluss- moment
	98 Sh-A	64 Sh-D	d 2)	DH	11;12	L	Е	b	s	В	L _{R1}	LR1 min.	LZR1	dR 3)	Mxl	Α.,	T _R [Nm]
14 ZR1	12,5	16,0	16	30	11	35	13	10	1,5	11,5	gen	71	L _{R1} +22	14x2,5	M3x12	1,34	6,1
19 ZR1	17,0	34,0	24	40	25	66	16	12	2,0	14,0		110	L _{R1} +50	20x3,0	M6x16	10,5	34
24 ZR1	60	75	28	55	30	78	18	14	2,0	16,0	호 트 호	128	L _{R1} +60	25x2,5	M6x20	10,5	45
28 ZR1	160	200	38	65	35	90	20	15	2,5	17,5	e bei Bes	145	L _{R1} +70	35x4,0	M8x25	25	105
38 ZR1	325	405	45	80	45	114	24	18	3,0	21,0	Bitte	180	L _{R1} +90	40x4,0	M8x30	25	123

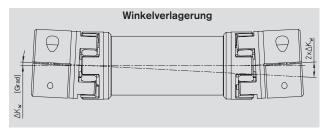
									ROTE	EX® G	S Bau	uart ZR2							
Größe		inz Dreh- KN [Nm] ¹⁾	maximale Fertig- bohrung					,	Abmess	sungen	[mm]				Präzisio	ns-Rohr [Nm²/rad]	Spannsatz Größe KTR 250	Spann- schrauben DIN EN ISO 4762- 12.9	Anzug- moment TA [Nm]
	98 Sh-A	64 Sh-D	d 2)	DH	11;12	lз	L	Е	b	s	В	L _{R2}	LR2 min	LZR2	dR	C ₂ 4)	dxD	Mxl	
14 ZR2	12,5	16,0	16	30	11	26	50	13	10	1,5	11,5		109	L _{R2} +22	10x2,0	68,36	10x16	M4x10	5,2
19 ZR2	17,0	34,0	24	40	25	26	67	16	12	2,0	14,0	und ben.	120	L _{R2} +50	12x2,0	130	12x18	M4x10	5,2
24 ZR2	60	75	28	55	30	38	86	18	14	2,0	16,0		156	L _{R2} +60	20x3,0	954,9	20x28	M6x18	17,0
28 ZR2	160	200	38	65	35	45	100	20	15	2,5	17,5	agen ange	177	L _{R2} +70	25x2,5	1811	25x34	M6x18	17,0
38 ZR2	325	405	45	80	45	45	114	24	18	3,0	21,0	Anfragen	192	L _{R2} +90	32x3,5	5167	32x43	M6x18	17,0
42 ZR2	450	560	55	95	50	52	128	26	20	3,0	23,0	- =	214	L _{R2} +100	40x4,0	11870	40x53	M6x18	17,0
48 ZR2	525	655	62	105	56	70	154	28	21	3,5	24,5	Bitte be	261	L _{R2} +112		17486	45x59	M8x22	41,0
55 ZR2	685	825	74	120	65	80	175	30	22	4,0	26,0	Be Bi	288	L _{R2} +130	55x4,0	33543	55x71	M8x22	41,0
65 ZR2	940	1175	80	135	75	80	185	35	26	4,5	30,5		387	L _{R2} +150	60x4,0	44362	60x77	M8x22	41,0

O Drehfedersteife bei 1m Länge des Zwischenrohrs
Wir bitten, bei Anfragen und Bestellungen das Wellenabstandsmaß L_{R1} / L_{R2} anzugeben, sowie die max. Drehzahl zur Überprüfung der biegekritischen Drehzahl. Bei vertikaler Anwendung muss eine Abstützscheibe verwendet werden (bitte bei der Bestellung mit angeben)


ROTEX® GS 24	ZR1	1000 mm	98 Sh-A-GS	1.0 -	Ø24	2.5 -	Ø24
Kupplungsgröße	Ausführung	Wellenab standsmass (L)	Zahnkranzhärte	Naben- ausführung	Fertig- bohrung	Naben- ausführung	Fertig- bohrung


¹⁾ Weitere Zahnkränze/Auslegung s. S. 148-151

Abhängig von der Nabenausführung
 muss bei Bedarf nachgearbeitet werden

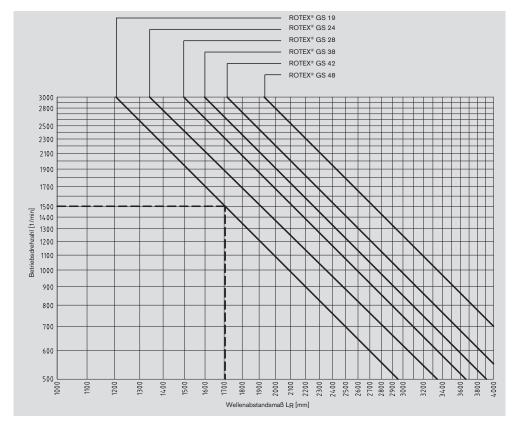


Verlagerungen und Technische Daten

$\Delta K_r = (L_{ZR} - 2 \bullet I)$	₁ - Ε) · tan α
---------------------------------------	---------------------------

	-	henwellenkupplun	
ROTEX® GS Größe mit	Axial ΔK _a	Radial ΔK _r 1)	Winkel a
98 Sh-A-GS	[mm]	[mm]	[Grad]
14	+1,0	15,16	0,9°
	-1,0	,	-,-
19	+1,2	14,67	0,9°
19	-1,0	14,07	0,9
24	+1,4	14.40	0,9°
24	-1,0	14,48	0,9
28	+1,5	14.00	0.9°
28	-1,4	14,30	0,9
38	+1,8	13,92	0,9°
38	-1,4	13,92	0,9
42	+2,0	13,73	0,9°
42	-2,0	13,73	0,9
48	+2,1	10.51	0,9°
48	-2,0	13,51	0,9
55	+2,2	10.10	0,9°
55	-2,0	13,19	0,9
65	+2,6	10.00	0,9°
65	-2,0	12,80	0,9

 $^{^{1)}}$ Radialverlagerungen bezogen auf eine Kupplungslänge L_{ZR} = 1000 mm


Berechnung der Gesamtdrehfedersteifigkeit:

$$C_{ges.} = 1 / (2 \cdot (1 / C_1) + (L_{Rohr} / C_2)) [Nm/rad]$$

mit
$$L_{Rohr} = (L_{ZR} - 2 \cdot L) / 1000 [m]$$

 C_1 = Drehfedersteife für Zahnkranz S. 148 C_2 = aus Tabelle S. 162/163

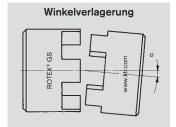
Diagramm der biegekritischen Drehzahlen für Bauart ZR3



Beispiel: ROTEX® GS 19 Betriebsdrehzahl: 1500 1/min max. zul. Wellenabstandsmaß: 1700 mm $Betriebsdrehzahl = n_{krit}/1,4$

Verlagerungen

Durch ihre Bauform ist die ROTEX® GS in der Lage Axialverschiebungen, Winkel- sowie Radialverlagerungen aufzunehmen, ohne dass Verschleiß oder frühzeitiger Ausfall der Kupplung auftritt. Die Spielfreiheit der Kupplung bleibt auch nach längerem Betrieb gewährleistet, da der Zahnkranz nur auf Druck beansprucht wird.



Axialverschiebungen können beispielsweise durch verschiedene Toleranzen der Verbindungsteile beim Zusammenbau oder durch Längenänderungen der Wellen bei Temperaturschwankungen entstehen. Da Wellenlagerungen zumeist axial gering belastbar sind, ist es die Aufgabe der Kupplung, diese

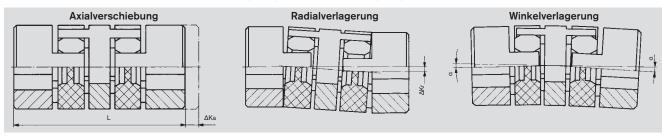
Axialverlagerung aufzunehmen und Reaktionskräfte gering zu halten.

Bei reiner Winkelverlagerung kreuzen sich die gedachten Symmetrielinien der Wellen in der Mitte der Kupplung. Diese Verlagerung kann im zulässigen Rahmen, ohne Gefahr von größeren Rückstellkräften, von der Kupplung problemlos aufgenommen werden.

Radialversatz resultiert aus einem parallelen Versatz der Wellen zueinander, hervorgerufen durch unterschiedliche Toleranzen an Zentrierungen oder durch Montage der Aggregate auf unterschiedlichen Ebenen. Bedingt durch die Art der Verlagerungen entstehen hier die

größten Rückstellkräfte und damit auch die höchsten Belastungen für angrenzende Bauteile.

Bei größeren Verlagerungen (insbesondere Radialverlagerungen) sollte, um zu hohe Rückstellkräfte zu vermeiden, die ROTEX® GS Bauart DKM doppelkardanisches System eingesetzt werden.


Die angegebenen zulässigen Verlagerungswerte der elastischen ROTEX® GS-Kupplungen stellen allgemeine Richtwerte dar unter Berücksichtigung der Kupplungsbelastung bis zum Nenndrehmoment TKN der Kupplung und einer auftretenden Umgebungstemperatur von + 30 °C. Die Verlagerungsangaben dürfen jeweils nur einzeln – bei gleichzeitigem Auftreten, nur anteilmäßig genutzt werden. Die ROTEX® GS-Kupplungen können Radial- und Winkelverlagerungen aufnehmen. Sorgfältiges und genaues Ausrichten der Wellen erhöht die Lebensdauer der Kupplung.

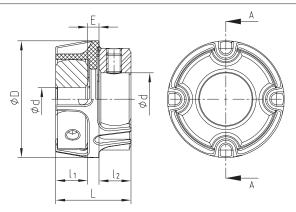
		Verlag	erungen Sta	andard	Varl	agerungen [JKM
Größe	Zahnkranz	1	1 1	I	i	1 1	
Grobe	GS	[mm] Axial ΔKa ¹⁾	[mm] Radial ΔKr	[Grad] Winkel α	[mm] Axial ΔKa ¹⁾	[mm] Radial ∆Kr	[Grad] Winkel α
	TO 01 A	Axiai Aita			Axiai Aita		
	70 Sh-A	. 0.4	0,14	1,2°		0,17	1,2°
5	80 Sh-A	+0,4	0,12	1,1°	+0,4	0,15	1,1°
	92 Sh-A	-0,2	0,06	1,0°	-0,4	0,14	1,0°
	98 Sh-A		0,04	0,9°		0,13	0,9°
	80 Sh-A		0,15	1,1°		0,23	1,1°
7	92 Sh-A	+0,6	0,10	1,0°	+0,6	0,21	1,0°
	98 Sh-A	-0,3	0,06	0,9°	-0,6	0,19	0,9°
	64 Sh-D		0,04	0,8°		0,17	0,8°
	80 Sh-A		0,19	1,1°		0,29	1,1°
9	92 Sh-A	+0,8	0,13	1,0°	+0,8	0,26	1,0°
	98 Sh-A	-0,4	0,08	0,9°	-0,8	0,24	0,9°
	64 Sh-D		0,05	0,8°		0,21	0,8°
	80 Sh-A		0,20	1,1°		0,35	1,1°
12	92 Sh-A	+0,9	0,14	1,0°	+0,9	0,32	1,0°
12	98 Sh-A	-0,4	0,08	0,9°	-0,9	0,29	0,9°
	64 Sh-D		0,05	0,8°	1	0,25	0,8°
	80 Sh-A		0,21	1,1°		0,40	1,1°
	92 Sh-A	+1,0	0,15	1,0°	+1,0	0,37	1,0°
14	98 Sh-A	-0,5	0,09	0,9°	-1,0	0,33	0,9°
	64 Sh-D	,	0,06	0,8°	· ·	0,29	0,8°
	80 Sh-A		0,15	1,1°		0,49	1,1°
	92 Sh-A	+1,2	0,10	1,0°	+1,2	0,45	1,0°
19	98 Sh-A	-0,5	0,06	0,9°	-1,0	0,41	0,9°
	64 Sh-D	0,0	0,04	0,8°	1,0	0,36	0,8°
	92 Sh-A		0,14	1,0°		0,59	1,0°
	98 Sh-A	+1,4	0,14	0,9°	+1,4	0,53	0,9°
24	64 Sh-D	-0,5	0,10	0,9°	-1,0	0,33	0,9°
	72 Sh-D	-0,5	0,07	0,8 0,7°	-1,0	0,47	0,8 0,7°
	92 Sh-A		0,04	1,0°		0,66	1,0°
		±1.5			±1.5		
28	98 Sh-A	+1,5	0,11	0,9°	+1,5	0,60	0,9°
	64 Sh-D	-0,7	0,08	0,8°	-1,4	0,53	0,8°
	72 Sh-D		0,05	0,7°		0,46	0,7°
	92 Sh-A		0,17	1,0°		0,77	1,0°
38	98 Sh-A	+1,8	0,12	0,9°	+1,8	0,69	0,9°
	64 Sh-D	-0,7	0,09	0,8°	-1,4	0,61	0,8°
	72 Sh-D		0,06	0,7°		0,54	0,7°
	92 Sh-A		0,19	1,0°		0,84	1,0°
42	98 Sh-A	+2,0	0,14	0,9°	+2,0	0,75	0,9°
	64 Sh-D	-1,0	0,10	0,8°	-2,0	0,67	0,8°
	72 Sh-D		0,07	0,7°		0,59	0,7°
	92 Sh-A		0,23	1,0°		0,91	1,0°
48	98 Sh-A	+2,1	0,16	0,9°	+2,1	0,82	0,9°
	64 Sh-D	-1,0	0,11	0,8°	-2,0	0,73	0,8°
	72 Sh-D		0,08	0,7°		0,64	0,7°
	92 Sh-A		0,24	1,0°		1,01	1,0°
55	98 Sh-A	+2,2	0,17	0,9°	+2,2	0,91	0,9°
	64 Sh-D	-1,0	0,12	0,8°	-2,0	0,81	0,8°
	72 Sh-D		0,09	0,7°		0,71	0,7°
	95Sh-A	+2,6	0,18	0,9°			
65	64 Sh-D		0,13	0,8°	_	_	_
	72 Sh-D	-1,0	0,10	0,7°			
75	95 Sh-A	+3,0	0,21	0,9°			
/5	64 Sh-D	-1,5	0,15	0,8°			
90	95 Sh-A	+3,4	0,23	0,9°			
90	64 Sh-D	-1,5	0,17	0,8°			

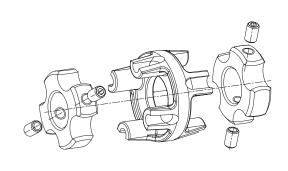
Verlagerungen

Wellenverlagerungen ROTEX® GS Bauart DKM

Bei diesem System werden die Rückstellkräfte bei Radialverlagerung durch das Zweigelenkprinzip auf ein Minimum reduziert, zusätzlich können sowohl höhere Axial- als auch Winkelverlagerungen von der Kupplung aufgenommen werden.

¹⁾ Die angegebenen Ka-Werte sind zum Längenmaß der entsprechenden Kupplungstype zu addieren.


spielfreie Drehgeberkupplung



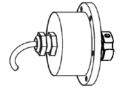
Doppelkardanisch für Messantriebe

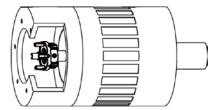
- Spielfreie Wellenkupplung für Messantriebe mit geringen Drehmomenten
- 3-teilige doppelkardanische Kupplung
- Kleine Baumaße niedrige Schwungmomente
- Axial steckbar einfache Blindmontage
- Lieferbar in den üblichen Wellenabmessungen ab Lager
- Temperaturbereich -40 °C bis +160 °C
- Elektrisch isolierend
- Fertigbohrungen nach ISO-Passung H7, Passfedernute ab Ø6 mm nach DIN 6885 Bl.1 - JS9
- Einsatz bis 40 m/s Umfangsgeschwindigkeit (höher auf Anfrage)

				CC	UNTEX	® Nabe	nwerkst	off Alum	ninium/Z	wischens	stück PEE	K			
		Drehmoment [Nm] Abmessungen [mm] Verlagerungen												Radialsteifig-	Axiale Rück-
	Größe	T _{KN}	T _{Kmax} .	min. d	max. d	D	11/12	Е	L	radial ΔK _r [mm]	axial ΔK _a [mm]	winkelig ΔK _W [°]	figkeit C _T [Nm/rad]	keit C _R [N/mm]	stellkraft C _A [N]
	6	0,3	0,6	2	6	15	4	4	12	0,05	-0,3/+0,6	0,36	48	26	10
NEW	12_	0,5	1,0	2	12	22	6	3,5	15,5	0,10	-0,5/+1,0	0,45	120	65	25
	14	1,0	2,0	5	14	31	8	4	20	0,12	-0,5/+1,0	0,57	235	70	27

Allgemeine Beschreibung

Bei der COUNTEX® handelt es sich um eine dreiteilige, spielfreie und drehsteife Kupplung die vorrangig in der Mess- und Reglungstechnik ihre Anwendung findet.


Durch die axiale Steckbarkeit gepaart mit der Nabengeometrie ergibt sich ein besonders kurzbauendes montagefreundliches Kupplungssystem. Das hochtemperaturfeste Material des Zwischenstücks sorgt für nahezu gleichbleibende Eigenschaften des Kupplungssystems selbst bei Temperaturen von bis zu 160 °C.

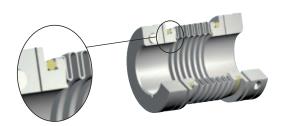

Mess- und Reglungstechnik

In der Mess- und Reglungstechnik wird eine hohe Drehfedersteifigkeit der Kupplung verlangt, um reproduzierbare Positionierungen zu erreichen.

Die auftretenden Drehmomente sind verhältnismäßig gering, so dass sich durch die Vorspannung eine spielfreie, drehsteife Kraftübertragung ergibt.

Das doppelkardanische Wirkungsprinzip der COUNTEX® reduziert die Rückstellkräfte auf ein Minimum.

Bestellbeispiel:	COUNTEX® 14
	Kupplungagräßa


COUNTEX® 14	Ø6,35	Ø10
Kupplungsgröße	Fertigungsbohrung Ød ₁	Fertigungsbohrung Ød ₂

Technische Beschreibung

Bei der TOOLFLEX® handelt es sich um eine Metallbalgkupplung; ein in der Praxis vielfach bewährtes Kupplungssystem. Der Metallbalg sorgt für einen optimalen Ausgleich von Axial-, Radial- und Winkelverlagerungen. Gleichzeitig hat sie durch Ihre geometrische Form eine hohe Torsionssteife sowie ein niedriges Massenträgheitsmoment. Die TOOLFLEX® wird in zwölf Baugrößen für maximale Drehmomente bis 600 Nm gefertigt.

Ihre Haupteinsatzgebiete liegen sowohl in Positioniersystemen, z. B. Kugelrollspindeln mit hoher Steigung, auch in Rundschalttische oder in Planeten- und Schneckengetrieben mit kleinen Übersetzungen.

Die altbekannte Welle-Nabe-Verbindung durch Klemmnaben garantiert eine einfache Montage mittels radialer Klemmschraube. Durch die Zweifachschlitzung der Nabe entsteht beim Anziehen der Klemmschraube keine Verformung am Balg.

Für höhere Reibschlussmomente kann auch die Bauart KN mit Konusnaben eingesetzt werden.

Durch ihr bewährtes Fügeverfahren entsteht eine kraftschlüssige, spielfreie Verbindung der Aluminiumnaben mit den mehrlagigen Edelstahlbälgen. Das Bördelverfahren der Baugrößen 16 bis 45 garantiert eine Drehmomentübertragung jeder einzelnen Balglage. Da die TOOLFLEX® eine Metallkupplung ist, bleibt sie auch im großen Temperaturbereich bis max. 200 °C dauerfest. Außerdem ist sie gegen Medieneinflüsse bzw. kritischen Betriebsbedingungen resistent.

zweifach geschlitzte Klemmnabe

Bauarten

Bauart mit Feststellgewinde

Bauart mit Klemmnaben

Bauart KN Bau

Bauart PI Bauart CF

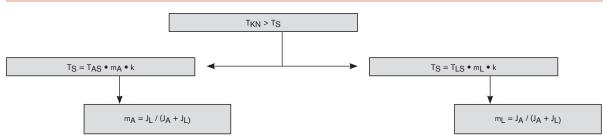
					Übersic	ht						
		Role Nobes		gewinde nrung 1.0/1.1)	Klemn	nnaben hrung 2.5/2.6)	К	N		기	С	F
Größe	Bauart	Balg-Naben- Verbindung	Drehmoment Balg T _{KN} [Nm]	max. Drehzahl [1/min]	Drehmoment Balg T _{KN} [Nm]	max. Drehzahl [1/min]	Drehmoment Balg T _{KN} [Nm]	max. Drehzahl [1/min]	Drehmoment Balg T _{KN} [Nm]	max. Drehzahl [1/min]	Drehmoment Balg T _{KN} [Nm]	max. Drehzahl [1/min]
5	S M	atur	0,1	47700								
7	S M	geklebt maximale Umgebungstemperatur 100°C	1	31800	1	31800						
9	S M	gek maxi lebungs	1,5	23800	1,5	23800						
12	S M	âm N	2	19000	2	19100						
16	S M	0	5	14900	5	14900						
20	S M	200°C	15	11900	10	11950			10	11950		
30	S M	gebördelt maximale Umgebungstemperatur			35	8700	35	15280	35	8700	35	8700
38	S M	gebö maxii ingstem			65	7350	65	12600	65	7350	65	7350
42	S M	Imgebr			95	6820	95	11580	95	6820	95	6820
45	S M				150	5750	150	9300	150	5750	150	5750
55	S M	geschweißt maximale Umgebungs- temperatur 200°C			340	4800	340	7870				
65	S M	gesch maxi Umgel tempo			600	3850						

Kupplungsauslegung

In der Regel wird die TOOLFLEX® wie alle anderen Kupplungssysteme nach dem Nenndrehmoment (T_{KN}) aus der Liste der technischen Daten ausgelegt. Dabei muss das Nenndrehmoment (T_{KN}) in allen Fällen über dem maximal zu übertragenden Spitzendrehmoment der Anlage (Beschleunigungs- oder Spitzenmoment) liegen. Dies sollte vor allem bei Einsätzen in Verbindung mit Servomotoren beachtet werden, da deren Beschleunigungsmomente sowohl positiv als auch negativ das Nenndrehmoment um ein Mehrfaches übersteigen können. Bei Werten über T_{KN} (Kollision, Störung) sind nur noch begrenzte Lastwechselzahlen möglich. In diesem Drehmomentbereich kann es zu bleibenden Verformungen des Balges und zu Bildung von Dauerbrüchen kommen. Die angegebenen Drehmomente T_{KN} beziehen sich auf den Balg. Die Welle-Nabe-Verbindung ist kundenseitig zu überprüfen.

Benennung	Zeichen	Definition bzw. Erklärung
Nenndrehmoment der Kupplung	T _{KN}	Drehmoment, das im gesamten zulässigen Drehzahlbreich dauernd übertragen werden kann.
Kupplungsmaximal- moment	T _{K max}	Drehmoment, was die Kupplung kurzzeitig (z. B Notaus) übertragen kann. T _{K max} = 1,5 • T _{KN}
Spitzendrehmoment der Anlage	TS	Spitzendrehmoment an der Kupplung
Spitzendrehmoment der Antriebsseite	TAS	Spitzendrehmoment bei antriebsseitigem Drehmomentstoß, z. B. Kippmoment des E-Motors.
Spitzendrehmoment der Lastseite	TLS	Spitzendrehmoment bei lastseitigem Drehmomentstoß, z. B. Bremsung
Trägheitsmoment	JA/L	Summe der auf der Antriebs- bzw. Lastseite vorhande- nen Trägheitsmomente bezogen auf die Kupplungs- drehzahl.
Massenfaktor der Antriebsseite	mĄ	Faktor, der die Massenverteilung bei antriebsseitigem Stoß- und Schwingungserregung berücksichtigt.
Massenfaktor der Lastseite	mL	Faktor, der die Massenverteilung bei lastseitiger Stoß- und Schwingungserregung berücksichtigt.
Reibschlussmoment	T _R	Drehmoment, das durch die reibschlüssige Welle- Nabe-Verbindung übertragen werden kann

Benennung	Zeichen	Definition bzw. Erklärung
Deficilitating	Zeichen	Deminion bzw. Likiarung
max. Motorleistung	P _{max} .	maximale Leistung in kW die der Motor erbringen kann
Motordrehzahl	n	Nenndrehzahl in 1/min des Motors
Verdrehwinkel	ф	Übertragungsfehler in Grad des Metallbalges durch Torsionsbeanspruchung
Torsionssteife	CT	Torsionssteife der Kupplung in Nm/rad, Daten siehe Tabellen auf folgenden Seiten
Erregerfrequenz des 2-Massen-Systems	f _e	in s ⁻¹
Erregerfrequenz des Antriebes	f _r	in s ⁻¹
Betriebsfaktor	k	k= 1,5 bei gleichförmiger Bewegung k= 2,0 bei ungleichförmiger Bewegung k= 2,5 - 4,0 bei stoßender Bewegung Für Antriebe an Werkzeugmaschinen (Servomotoren) sind k-Werte von 1,5 - 2,0 einzusetzten
Schraubenanzugsmo- ment	TA	Anzugsmoment der Schraube


Überschlägige Berechnung

Die Kupplung muss so bemessen sein, dass folgende Bedingung erfüllt ist:

Bei der Auslegung für Servomotoren wird nicht mit P_{max}, sondern mit den Drehmomentwerten der Motorlieferanten gerechnet. Bitte verwenden Sie bei der Dimensionierung der Kupplung die entsprechenden Daten des Herstellers unter Berücksichtigung des zu verwendenden Servoreglers.

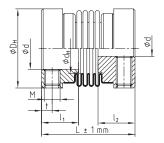
Berechnung nach Beschleunigungsmoment (Antriebsseitig/Lastseitig)

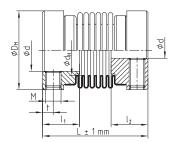
Überprüfung der Torsionssteife

Überprüfung der Resonanzfrequenz

Die Resonanzfrequenz der Kupplung muss über oder unter der Frequenz der Anlage liegen. Für das mechanische Ersatzmodell des 2-Massen-Systems gilt:

$$f_{e} = 1 / (2 \bullet \pi) \bullet \sqrt{(C_{T} \bullet ((J_{L} + J_{A}) / (J_{L} \bullet J_{A})) [Hz]}$$


In der Praxis sollte gelten: $f_e \ge 2 \bullet f_r$


Bauart S und M mit Feststellgewinde

- Spielfrei, drehsteif
- Wartungsfrei
- Geringes Massenträgheitsmoment
- Leichte Montage durch Toleranz F7
- Temperaturbereich für Größe 5 bis 12: -30 °C bis +100 °C Temperaturbereich für Größe 16 bis 20: max. 200 °C
- Fertigbohrung ab Ø 6 mm wahlweise auch mit Passfedernut nach DIN 6885 Bl.1 - JS9 erhältlich

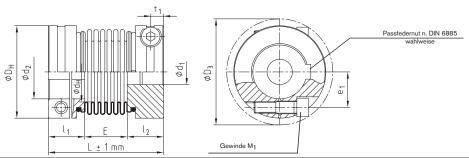
TOOLFLEX® Bauart S Ausf. 1.1

TOOLFLEX® Bauart M Ausf. 1.1

		Т	OOLFLE	X® S/M	mit Fes	tstellge	winde (A	Ausf. 1.1) Nabe	nwerkst	off Alur	ninium/l	Balgwerl	kstoff E	delstahl		
		-e-	Bala Dreh-		Abmessungen [mm]								711	Verlagerun	aon	Torsions-	Gewicht 5)
Größe	Bauart	Nap Pd Pd	moment	Fertigb	ohrung		Allge	emein		Fest	stellgewind	lestift	Zui.	venagerun	steifigkeit	Gewicht	
arobe	1/2)	Balg- Verbi	Balg Dreh- moment T _{KN} ³⁾ [Nm]	min. d	max. d	DH	dΗ	L	11;12	М	t	Anzahl 4) z	Axial [mm]	Radial [mm]	Winkel [Grad]	C _T [Nm/rad]	[kg]
5	S		0.1	2	5	10	6	15 ¹⁾	6	M2	1,8	1	±0,30	0,10	0,7	97	0,0027
5	М		0,1	2	5	10	0	17 2)	0	IVIZ	1,0	'	±0,40	0,15	1,0	75	0,003
7	S]	1.0	3	8	15	9	18 ¹⁾	7	МЗ	2,0		±0,30	0,10	0,7	390	0,005
,	М	geklebt	1,0	3	0	15	9	20 2)		IVIO	1013 2,0	'	±0,40	0,15	1,0	300	0,006
9	S	gek	1,5	4	10	20	12	21 1)	8	Mo	M3 2,2	2	±0,35	0,15	1,0	750	0,010
9	М		1,5	4	10	20	12	24 2)	٥	IVIO	2,2	2	±0,50	0,20	1,5	580	0,011
12	S		2.0	5	14	25	16	27,5 1)	11	M4	2.8	2	±0,40	0,15	1,0	1270	0,017
12	М		2,0	3	14	20	10	31 ²⁾	11	1014	2,0		±0,60	0,20	1,5	980	0,019
16	S	<u>_</u>	5.0	6	18	32	20	37 1)	13	M5		2	±0,30	0,15	1,0	4500	0,046
10	М	ebördelt	5,0	0	10	32	20	41 2)	13	IVIO	4	2	±0,50	0,20	1,5	3050	0,049
20	S	ebö	15	6	25	40	27	42 ¹⁾	15	M5	5	2	±0,40	0,15	1,0	9600	0,076
20	М	Ď	15	J	25	40	21	49 2)	15	IVIO	5	2	±0,60	0,20	1,5	6600	0,082

Anzahl je Nabe; ab Grobe 9: ZX12/ Versetzt
§ Angaben beziehen sich auf die gesamte Kupplung mit max. Bohrung Umfangsgeschwindigkeit v_{max}= 25 m/s
Nabenausführung 1.1 = Nabe ohne Passfedernut mit Feststellgewinde.
Nabenausführung 1.0 = Nabe mit Passfedernut mit Feststellgewinde

Bestellbeispiel:	TOOLFLEX® 7 M	1.1 -	Ø4	1.1 -	· Ø6
	Kupplungsgröße	Nabenausführung	Fertigbohrung	Nabenausführung	Fertigbohrung


¹⁾ Bauart S = 4 wellig
2) Bauart M = 6 wellig
3) Auslegung siehe Seite 168
4) Anzahl je Nabe; ab Größe 9: 2x120° versetzt

Bauart M mit Klemmnaben

- Spielfrei, drehsteif
- Reibschlüssige Klemmnaben
- Wartungsfrei
- Temperaturbereich: für Größe 5 bis 12: -30 °C bis +100 °C ab Größe 16: Durch Bördel-Einpress-Verbindung geeignet für hohe Temperaturbereiche max. 200 °C
- Gute Korrosionsbeständigkeit
- Fertigbohrung ab Ø 6 mm wahlweise auch mit Passfedernut nach DIN 6885 Bl.1 - JS9 erhältlich

	TOOLFLE	EX® Bauart	M mit Kle	mmnaben	Nabenwe	Nabenwerkstoff Aluminium (Gr. 55/65 Stahl)/Balgwerkstoff Edelstahl							
						Abmessi	ungen [mm]						
Größe	mind./maxi. F	ertigbohrung			Allgemein			Klemmschrauben DIN EN ISO 4762					
	min. d	max. d	L	l ₁ ; l ₂	Е	DH	dΗ	M ₁	D ₃	t ₁	e1	T _A [Nm]	
7	3	7	26	9	8	15	9	M2	16,5	3,2	5	0,37	
9	3	9	32	11	10	20	12	M2,5	21,5	3,5	7,1	0,76	
12	4	12	38	13	12	25	16	M3	26,5	4	8,5	1,34	
16	5	16	49	17,0	15	32	20	M4	35,0	5	12	2,9	
20	8	20	62	21,5	19	40	27	M5	43,5	6	14,5	6	
30	10	30	72	23,0	26	55	33	M6	58,0	7	19	10	
38	12	38	81	25,5	30	65	42	M8	72,6	9	25	25	
42	14	42	95	30,0	35	70	46	M8	76,1	9	27	25	
45	14	45	103	32,0	39	83	58	M10	89,0	11	30	49	
55 ⁴⁾	20	55	125	40,0	45	100	73	M12	106,0	14	37	120	
65 4)	30	65	142	45,0	52	125	95	M14	127,2	15	45	185	

			hnische [

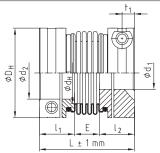
Größe	Balg- labe-Ver- bindung	Drehmoment Balg	Drehzahl n 2)	Trägheits- moment 3)	Torsionssteife CT	Axial Federsteife	Radial Federsteife	Z	ul. Verlagerunge	n	Gewicht 3)
Grobe	Bal Nabe bind	T _{KN} [Nm] 1)	[1/min]	[x10 ⁻⁶ kgm ²]	[Nm/rad]	[N/mm]	[N/mm]	Axial [mm]	Radial [mm]	Winkel [Grad]	[kg]
7	bt	1	31800	0,3	300	_	_	±0,4	0,15	1,0	0,008
9	geklet	1,5	23800	1,0	580	_	_	±0,5	0,20	1,5	0015
12	ge	2	19100	2,7	980	-	_	±0,6	0,20	1,5	0,03
16		5	14900	10	3050	29	92	±0,5	0,20	1,5	0,06
20		15	11950	32	6600	42	126	±0,6	0,20	1,5	0,14
30	#	35	8700	123	14800	65	155	±0,8	0,25	2,0	0,31
38	gebördelt	65	7350	262	24900	72	212	±0,8	0,25	2,0	0,45
42	geb	95	6820	427	36500	80	333	±0,8	0,25	2,0	0,52
45		150	5750	1020	64000	88	492	±1,0	0,30	2,0	1,13
55 ⁴⁾		340	4800	5118	96100	107	598	±1,0	0,30	2,0	3,3
65 ⁴⁾		600	3850	13727	226550	135	910	±2.0	0.35	2.0	5.6

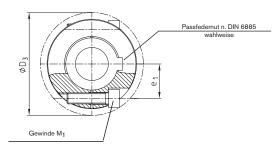
NEW

NEW

																										,				
				Übe	rtrag	bare	e Re	ibsc	hlus	smo	men	te T	R [N	m] c	ler K	lem	mna	be o	hne	Pas	sfed	ernı	ıt Aı	ısf. 2	2.5					
Größe	ØЗ	Ø4	Ø5	Ø6	Ø7	Ø8	Ø9	Ø10	Ø11	Ø12	Ø14	Ø15	Ø16	Ø18	Ø19	Ø20	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø50	Ø55	Ø60	Ø65
7	0,84	0,91	0,97	1,04	1,10																									
9	1,87	1,98	2,09	2,20	2,31	2,41	2,52																							
12		3,48	3,65	3,81	3,98	4,14	4,31	4,48	4,64	4,81																				
16			8,5	8,8	9,1	9,4	9,7	9,9	10,2	10,5	11,1	11,4	11,7																	
20						17,6	18,1	18,6	19,1	19,5	20,5	21,0	21,4	22,4	22,9	23,3														
30									33,1	33,8	35,1	35,8	36,5	37,8	38,5	39,2	41,9	42,5	44,6	45,9										
38											79,2	80,4	81,7	84,2	85,4	86,6	91,6	92,8	96,5	99,0	102	105	109							
42											84,2	85,4	86,6	89,1	90,3	91,6	96,5	97,8	102	104	106	110	114	116	119					
45																157	165	167	173	177	181	187	193	197	200	206				
55 ⁴⁾																	397	401	413	421	429	442	454	462	470	482	502	523		
65 ⁴⁾																				720	732	750	768	780	792	810	840	870	900	930

Bestellbeispiel:


TOOLFLEX® 30 M	2.5	Ø25	2.5	Ø30
Kupplungsgröße	Nabenausführung	Fertigbohrung	Nabenausführung	Fertigbohrung

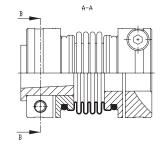


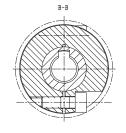
Bauart S mit Klemmnaben

- Kurzbauend
- Höhere Drehfedersteifigkeit
- Geringeres Massenträgheitsmoment
- Temperaturbereich: für Größe 5 bis 12: -30 °C bis +100 °C ab Größe 16: Durch Bördel-Einpress-Verbindung geeignet für hohe Temperaturbereiche max. 200 °C
- Gute Korrosionsbeständigkeit
- Fertigbohrung ab Ø 6 mm wahlweise auch mit Passfedernut nach DIN 6885 Bl.1 - JS9 erhältlich

	TOOLFLEX	(® Bauart S	mit Klem	mnaben	Nabenwe	rkstoff Alu	ıminium (G	ar. 55/65 S	tahl)/Balg	werkstoff	Edelstahl	
						Abmessu	ngen [mm]					
Größe	mind./maxi. F	ertigbohrung			Allgemein				Klemmsch	rauben DIN EN	ISO 4762	
	min. d	max. d	L	11;12	E	DH	dН	M ₁	D ₃	t ₁	e ₁	T _A [Nm]
7	3	7	24	9	6	15	9	M2	16,5	3,2	5	0,37
9	3	9	29	11	7	20	12	M2,5	21,5	3,5	7,1	0,76
12	4	12	34,5	13	8,5	25	16	МЗ	26,5	4	8,5	1,34
16	5	16	45	17,0	11	32	20	M4	35,0	5	12,0	2,9
20	8	20	55	21,5	12	40	27	M5	43,5	6	14,5	6
30	10	30	63	23,0	17	55	33	M6	58,0	7	19	10
38	12	38	69	25,5	18	65	42	M8	72,6	9	25	25
42	14	42	84	30,0	24	70	46	M8	76,1	9	27	25
45	14	45	86,5	32,0	22,5	83	58	M10	89,0	11	30	49
55 ⁴⁾	20	55	111	40,0	31	100	73	M12	106,0	14	37	120
65 ⁴⁾	30	65	126	45.0	36	125	95	M14	127.2	15	45	185

NEW


					Technis	che Daten					
Größe	Balg- Nabe-Ver- bindung	Drehmoment Balg	Drehzahl	Trägheits- moment 3)	Torsionssteife CT	Axial Federsteife	Radial Federsteife	z	ul. Verlagerunge	en	Gewicht 3)
Grobe	Nabe bind	T _{KN} 1) [Nm]	[min-1]	[x10 ⁻⁶ kgm ²]	[Nm/rad]	[N/mm]	[N/mm]	Axial [mm]	Radial [mm]	Winkel [Grad]	[kg]
7		1	31800	0,26	390	_	_	±0,3	0,10	0,7	0,007
9	0		23800	0,97	750	_	1	±0,35	0,15	1,0	0,014
12	ge	2	19100	2,6	1270	_	I	±0,4	0,15	1,0	0,025
16		5	14900	9	4500	43	138	±0,3	0,15	1,0	0,06
20	_ <u>=</u>	15	11950	30	9600	63	189	±0,4	0,15	1,0	0,12
30	gebördelt	35	8700	114	17800	97	233	±0,5	0,20	1,5	0,24
38	l ebë	65	7350	245	37400	108	318	±0,6	0,20	1,5	0,35
42	Ď	95	6820	396	54700	120	499	±0,6	0,20	1,5	0,49
45		150	5750	931	95800	132	738	±0,9	0,25	1,5	0,82
55 ⁴⁾		340	4800	4996	144100	160	894	±1,0	0,25	1,5	3,2
65 ⁴⁾	65 ⁴⁾		3850	13318	322740	212	1365	±1,0	0,30	1,5	5,5

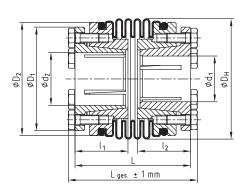

Auslegung siehe Seite 168
 Bei v= 25 m/s
 Angaben beziehen sich auf die gesamte Kupplung mit max. Bohrung
 Nabe aus Stahl mit Balg verschweißt
 Nabenausführung 2.5 = Klemmnabe ohne Passfedernut,
 Nabenausführung 2.6 = Klemmnabe mit Passfedernut

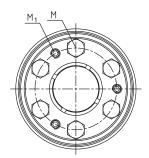
Hinweis:

Reibschlussmoment T_R der Klemmnabe siehe Bauart M Seite 170

Ausführung für FANUC-Motoren Weitere Bauarten:

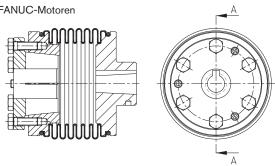
Bestellbeispie	ŀ
Destellpeisble	•


TOOLFLEX® 30 S	2.5	Ø25	2.5	Ø30
Kupplungsgröße	Nabenausführung	Fertigbohrung	Nabenausführung	Fertigbohrung



Bauart KN

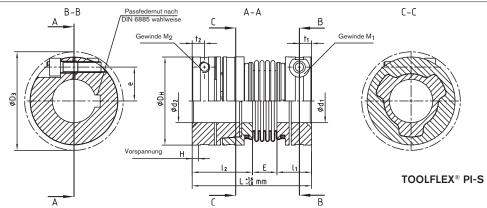
- Spielfrei, drehsteif
- Kraftschlüssige Balg-Nabe-Verbindung
- Hohe Reibschlussmomente
- Wartungsfrei
- Gute Rundlaufeigenschaften bei hohen Drehzahlen
- Maximale Drehzahl bis 40 m/s Umfangsgeschwindigkeit


TOOLFLEX® S-KN

				TOOLF	LEX® Ba	uart KN	Nabe	nwerk	stoff S	stahl/E	Balg Ed	lelstah	Ī				
								Ab	messung	en [mm]							
Größe	Drehmo- ment Balg	Fertigb	ohrung		L	Lg	es·					Sp	annschrau	ben	Ab	drückgewir	nde
	TKN 1) [Nm]	min. d	max.d	4-wellig 2)	6-wellig ³⁾	4-wellig ²⁾	6-wellig 3)	l ₁ ; l ₂	DH	D ₁	D ₂	М	T _A [Nm]	Anzahl z	M ₁	Anzahl z	TA1 ⁵⁾ [Nm]
30	35	12	22	48	57	54	63	22	50	43	47	M4	2,9	12	M4	6	1,2
38	65	12	28	56	68	63	75	26	60,5	52	56	M5	6	12	M5	6	1,4
42	95	14	35	64	75	71	82	29	66	60	63	M5	6	12	M5	6	1,4
45	150	15	40	74,5	91	82,5	99	34	82	68	77	M6	14	12	M6	6	3
55 ⁴⁾	340	15	56	95,5	109	106	120	40	97	95	95	M8	35	12	M8	6	6

	Übertragbare Reibschlußmomente Т _R [Nm] der Konusnaben KN																	
Größe	Ø14	Ø15	Ø16	Ø19	Ø20	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø48	Ø50	Ø55
30	50	58	66	71	79													
38		81	92	130	103	149	161	202										
42				105	117	168	131	164	189	215	257							
45					230	332	230	288	331	376	451	531	589					
55 ⁴⁾							483	606	696	792	585	690	764	843	967	1101	1194	1445

 ¹⁾ Auslegung siehe Seite 168
 2) Bauart S = 4-wellig
 3) Bauart M = 6-wellig
 4) Nabe aus Stahl mit Balg verschweißt
 5) Nach Montage der Spannschrauben (M) Abdrückgewinde (M₁) mit dem vorgesehenen Moment T_{A1} anziehen


Bestellbeispiel:	TOOLFLEX® 38 S-KN	Ø15	Ø22
	Kupplungsgröße	Fertigbohrung	Fertigbohrung

Bauart PI

- Axial steckbar
- Spielfrei, drehsteif
- Wartungsfrei
- Durch Bördel-Einpress-Verbindung geeignet für hohe Temperaturen
- Gute Korrosionsbeständigkeit durch Edelstahlbalg und Alu-Klemmnaben
- Wahlweise als Bauart M (6-wellig)
 - höhere zul. Verlagerungen
- oder Bauart S (4-wellig, kurzbauend)
 - höhere Drehfedersteifigkeit
 - geringes Massenträgheitsmoment

			TOO	LFLEX® I	Bauart F	Pl Na	benwerkst	off Alur	ninium/	/Balg Ede	elstahl				
								Abmessu	ngen [mm]						
Größe	Bauart					Allgeme	in					K	lemmschrau	be	
		min. d ₁ ;d ₂	max. d ₁	max.d2	L 1)	l ₁	12	Е	DH	Н	M ₁ ;M ₂	Dз	е	t1;t2	T _A [Nm]
20	S	8	20	20	67,0	21,5	33.5	12,0	40	0.5 - 1	M5	43.5	14.5	6	6
20	М	0	20	20	74,0	21,0	33,3	19,0	40	0,5 - 1	IVIO	45,5	14,5	0	0
30	S	10	30	28	73,5	23,0	33,5	17,0	55	0.5 - 1	M6	58,0	19.0	7	10
30	М	10		20	82,5	20,0	00,0	26,0	00	0,0 1	IVIO	30,0	13,0	,	10
20	38 S 12		38	32	87,5	25,5	44,0	18,0	65	0,5 - 1,5	M8	72,6	25,0	9	25
36	М	12	30	32	99,5	20,0	44,0	30,0	0.5	0,5 - 1,5	IVIO	72,0	25,0	9	25
42	S	14	42	35	93,0	30	39,0	24,0	70	0,5 - 1,5	M8	76,1	25,0	9	25
42	М	14	42	33	104,0	30	39,0	35,0	/0	0,5 - 1,5	IVIO	70,1	25,0	9	20
45	S	14	45	42	96,0	32,0	41,5	22,5	83	0,5 - 1,5	M10	89,0	30,0	11	49
40	М			72	112,5	02,0	41,5	39,0	00	0,0 1,0	IVITO	03,0	00,0		73
						Te	chnische D	aten							
		Drehmon		Drehzahl	Trägh		Torsionssteife		xial	Radial		zul. Verla	gerungen		Gewicht 4)
Größe	Bauart	Balg T _{KN} [Nr		n ³⁾ [1/min]	mome [x10 ⁻⁶ k		C _T [Nm/rad]		rsteife mm]	Federsteife [N/mm]		ial [mm]	Winkel [Gr		[kg]
20	S	15		11950	37	7	6600	(3	189		0,15	1,0		0,15
20	М	15		11930	38	3	4900	4	12	126		0,20	1,5		0,16

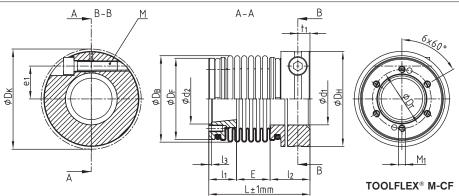
		T _{KN} [Nm] 2)	[1/min]	[x10 ⁻⁶ kgm ²]	[Nm/rad]	[N/mm]	[N/mm]	Radial [mm]	Winkel [Grad]	[kg]
20	S	15	11950	37	6600	63	189	0,15	1,0	0,15
20	М	15	11950	38	4900	42	126	0,20	1,5	0,16
30	S	35	8700	140	11500	97	233	0,20	1,5	0,29
30	М	35	8700	145	10200	65	155	0,25	2,0	0,31
38	S	65	7350	329	21500	108	318	0,20	1,5	0,50
38	М	65	7350	346	15100	72	212	0,25	2,0	0,52
42	S	95	6820	396	31500	120	499	0,20	1,5	0,49
42	М	95	6620	427	22000	80	333	0,25	2,0	0,52
45	S	150	5750	1031	55000	132	738	0,25	1,5	0,93
45	М	150	5750	1127	41000	88	492	0,30	2,0	1,00

	Über	tragba	are Re	ibschl	ussmo	ment	T _R [N	m] dei	Klem	mnab	e ohne	Pass	feder	nut Au	sf. 2.5	für Ø	d ₁ /Ød	2		
Größe	Ø8	Ø9	Ø10	Ø11	Ø12	Ø14	Ø15	Ø16	Ø18	Ø19	Ø20	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42
20	17,6	18,1	18,6	19,1	19,5	20,5	21,0	21,4	22,4	22,9	23,3									
30				33,1	33,8	35,1	35,8	36,5	37,8	38,5	39,2	41,9	42,5	44,6	45,9					
38						79,2	80,4	81,7	84,2	85,4	86,6	91,6	92,8	96,5	99,0	102				
42						79,2	80,4	81,7	84,2	85,4	86,6	91,6	92,8	96,5	99,0	102	105			
45											157	165	167	173	177	181	187	193	197	200

⁴⁾ Angaben beziehen sich auf die gesamte Kupplung mit max. Bohrungen

Bestellbeispiel:

TOOLFLEX® 30 PI-S	d ₁ - Ø22	d ₂ - Ø18
Kupplungsgröße	Fertigbohrung	Fertigbohrung


¹⁾ Im gesteckten Zustand 2) Auslegung siehe Seite 168 3) Bei v= 25 m/s

Bauart CF

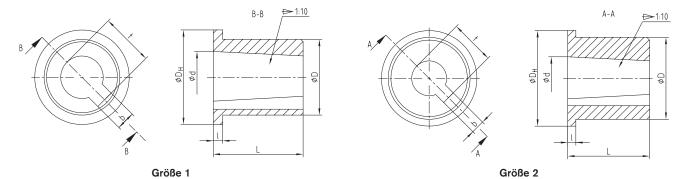
- Spielfrei, drehsteif
- Wartungsfrei
- Kraftschlüssige Balg-Nabe-Verbindung
- Durch Bördel-Einpress-Verbindung geeignet für hohe Temperaturen (max. 200 °C)
- Als Bauart M (6-wellig) und S (4-wellig) erhältlich
- Sonderausführung mit 1-, 2- oder 3-welligen Balg verfügbar

		ТО	OLFLEX	® Baua	rt M-CF ι	ind S	-CF Na	benw	erksto	ff Alun	ninium	(Gr. 55	Stahl)	/Balg E	delstah	ı		
Größe	Fertigl	oohrung	1			Abmes	ssungen [mr	n]					Kle	emmschrau	ube		Flar	sch
Grobe	min. d ₁	max. d ₁	DH	DB	DF	d ₂ H	7 lg	11	l ₂	E	L	DK	e ₁	t ₁	М	TA	DT	M ₁
30	10	20	55	50	47	25 29	1,5	16	23,0	17,0 ¹⁾ 26,0 ²⁾	56,0 ¹⁾	58,0	19	7	M6	10	30 34	M4
38	12	38	65	60,5	55,75	29 36	1,5	18	25,5	18,0 ¹⁾	61,5 ¹⁾ 73,5 ²⁾	72,6	25	9	M8	25	35 42	M5
42	14	42	70	66	62,95	36 43	1,5	21	30,0	24,0 ¹) 35,0 ²)	75,0 ¹) 86,0 ²)	76,1	27	9	M8	25	42 49	M5
45	14	45	83	82	77	38 49	1,5	23	32,0	22,5 ¹⁾ 39,0 ²⁾	77,5 ¹⁾ 94,0 ²⁾	89,0	30	11	M10	49	45 56	M6
55 ⁴⁾	20	55	100	97	95	51 68	1,5	28	40,0	31,0 ¹⁾ 45,0 ²⁾	99,0 ¹⁾	106,0	37	14	M12	120	60 78	M8
							Te	chnis	che Da	iten								
Größe	D-	uart	Drehmome	nt Balg	Drehzahl n	5) 7	Torsionssteit	e CT	Axial Fede	ersteife	Radial Fe	edersteife			zul. Verla	gerungen		
Grobe	Ба	uarı	TKN [Nr	m] ³⁾	[1/min]		[Nm/rad]	[N/m	m]	[N/i	mm]	Axial	[mm]	Radia	l [mm]	Winkel	[Grad]
30		3	35		8700		14800	L	97		2	33	±	0,5	0,	20	1	,5
		И			0700		14000		65			55	±	0,8	0,	25	2	,0
38		3	65		7350		24900		108			18	±	0,6	0,	20	1	,5
		И							72		_	12		0,8	- '	25		,0
42		3	95		6820		36500	-	120		-	99		0,6	0,			,5
		Л							80			33		0,8	0,			,0
45		3	150	.	5750		64000		132			38		0,9		25		,5
		И							88			92		1,0		30		,0
55 ⁴⁾		3	340		4800		96100		160			94		1,0	0,			,5
	P	Л							107	/	59	98	±	1,0	0,	30	2	,0

		Übe	ertrag	bare F	Reibsc	hlußn	nomer	ite T _R	[Nm]	der K	lemm	nabe	ohne	Passf	edern	ut Aus	f. 2.5				
Größe	Ø10	Ø11	Ø12	Ø14	Ø15	Ø16	Ø18	Ø19	Ø20	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø50	Ø55
30		33,1	33,8	35,1	35,8	36,5	37,8	38,5	39,2	41,9	42,5	44,6	45,9								
38							84,2	85,4	86,6	91,6	92,8	96,5	99,0	102	105	109					
42				84,2	85,4	86,6	89,1	90,3	91,6	96,5	97,8	102	104	106	110	114	116	119			
45									157	165	167	173	177	181	187	193	197	200	206		
55 ⁴⁾										397	401	413	421	429	442	454	462	470	482	502	523

Bestellbeispiel:

TOOLFLEX® 38 M-CF	Ø15	Ø29 - Ø35 - 6xM5
Kupplungsgröße	Fertigbohrung	Abmessungen Flansch (d ₂ - D _T - M ₁)


¹⁾ Bauart S = 4-wellig
²⁾ Bauart M = 6-wellig
³⁾ Auslegung siehe Seite 168
⁴⁾ Nabe aus Stahl mit Balg verschweißt
⁵⁾ Bei v= 25m/s

Basissortiment

	Basisso	rtiment	TOOLF	LEX® Ba	uart S ι	und M m	nit Fests	tellgew	inde (Fe	ertigboh	rung [m	m] mit	SO-Tol	eranz F	7)	
Größe	Nabenausführung	Ø2	Ø3	Ø4	Ø5	Ø6	Ø6,35	Ø7	Ø8	Ø9	Ø9,52	Ø10	Ø11	Ø12	Ø14	Ø16
5	1.1	•	•	•	•											
7	1.1		•	•	•	•		•	•							
9	1.1			•	•	•		•	•	•		•				
12	1.1				•	•		•	•	•		•		•	•	
16	1.1					•			•			•	•	•	•	
20	1.1					•			•			•	•	•	•	•

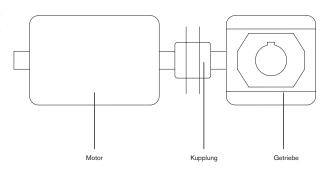
		I	Basi	isso	rtim	ent	TOC	DLFL	EX®	M	und	Sm	it K	lem	mna	ben	(Fe	rtigk	oohr	ung	[mr	n] m	nit IS	50-1	Гole	ranz	F7)				
Größe	Øз	Ø4	Ø5	Ø6	Ø 6,35	Ø7	Ø8	Ø9	Ø 9,52	Ø10	Ø11	Ø12	Ø14	Ø15	Ø16	Ø18	Ø19	Ø20	Ø22	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø48	Ø50	Ø55
7		•	•	•	•	•																										
9	•	•	•	•	•	•	•	•	•																							
12		•	•	•	•		•	•		•	•	•																				
16			•	•	•	•	•	•		•	•	•	•	•	•																	
20										•	•	•	•	•	•	•	•	•														
30													•	•	•	•	•	•	•	•	•	•	•									
38																	•	•	•	•	•	•	•	•	•	•						
42																	•	•	•	•	•	•	•	•	•	•	•	•				\Box
45																			•		•	•	•	•	•	•	•	•	•			
55																								•	•	•	•	•	•	•	•	•
65																																

		Bau	art M und S	Abmessunge	en [mm] der l	Buchse für F	ANUC-Motor	ren	
Buchsen Größe	L	I	DH	D	d ^{+0,05}	p _{JS9}	t+0,1	Kegel	Bemerkung
1	16	2	20	16	10,9	4	12,2	1:10	Für TOOLFLEX® Gr. 16-20
2	30	3	35	30	15,8	5	17,9	1:10	Für TOOLFLEX® Gr. 30-45

			Bas	issortir	nent T	OOLFL	EX® KN	l (Ferti	gbohru	na [mr	nl mit I	SO-To	leranz	F7)				
Größe	Ø14	Ø15	Ø16	Ø18	Ø19	Ø20	Ø22	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45	Ø48
30	•	•	•	•	•	•	•											
38	•	•	•	•	•	•	•	•	•	•								
42				•	•	•	•	•	•	•	•	•	•					
45				•	•	•	•	•	•	•	•	•	•	•				
55										•	•	•	•	•	•	•	•	•

■ Vorgebohrt Weitere Abmessungen auf Anfrage

RADEX®-NC Servolamellenkupplung



Technische Beschreibung

Die RADEX®-NC ist eine speziell für die Servotechnik entwickelte Baureihe. Bei dieser Kupplung sorgt ein Paket aus drehsteifen, jedoch biegeelastischen Stahllamellen dafür, dass axialer, winkeliger und radialer Wellenversatz zuverlässig ausgeglichen werden. Als Ganzmetallkupplung - die Lamellen sind aus rostfreiem Stahl - kann die RADEX®-NC auch bei hohen Temperaturen (bis 200 °C) und unter aggressiven Umgebungsbedingungen eingesetzt werden. Die RADEX®-NC wird in 7 Baugrößen von Größe 5 bis 42 für maximale Drehmomente bis 360 Nm gefertigt. Die Naben sind als reibschlüssige Klemmnaben in Aluminium (Gr. 42 in Stahl) ausgeführt und ermöglichen damit Spielfreiheit auch bei Reversierbetrieb.

Ein typisches Einsatzgebiet für die RADEX®-NC sind spielfreie Schneckengetriebe mit kleinen Übersetzungen. Die Kupplungssteifigkeit muss wegen der Übersetzung des Getriebes von der Antriebsseite auf die Abtriebsseite umgerechnet werden. Hierbei hat die Übersetzung selber einen entscheidenden Einfluss, da sie quadratisch in die Berechnung eingeht. Diese umgerechnete Steifigkeit wird in Reihe mit der Getriebesteifigkeit addiert, um die Gesamtsteifigkeit zu erhalten. Bei Übersetzungen kleiner i = 8 empfehlen wir aufgrund des Steifigkeitsverlustes des Gesamtsystems bei Verwendung von elastischen Kupplungen den Einsatz der RADEX®-NC.

Ex-Schutz-Einsatz

RADEX®-NC-Kupplungen eignen sich für die Kraftübertragung in Antrieben, die für den Einsatz in explosionsgefährdeten Bereichen vorgesehen sind. Die Kupplungen sind nach EG-Richtlinie 94/9/EG (ATEX 95) als Geräte der Kategorie 2G/2D beurteilt und bestätigt und somit für den Einsatz in explosionsgefährdeten Bereichen der Zone 1, 2, 21 und 22 geeignet. Bitte lesen Sie hierzu auch die Hinweise in der jeweiligen Baumusterprüfbescheinigung und der Betriebs- und Montageanleitung; einzusehen unter www.ktr.com.

Auslegung:

Bei Einsatz im explosionsgefährdeten Bereich sind Klemmnaben ohne Passfeder nur für Kat. 3 (mit Paßfeder für Kat. 2) so auszulegen, dass vom Anlagenspitzendrehmoment einschließlich aller Betriebsparameter zum Reibschluss- und Nenndrehmoment der Kupplung mindestens eine Sicherheit von s=2 vorliegt.

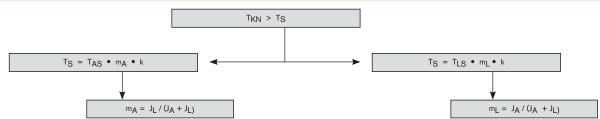
RADEX®-NC Servolamellenkupplung

Kupplungsauslegung

In der Regel wird die RADEX®-NC wie alle anderen Kupplungssysteme nach dem Nenndrehmoment (T_{KN}) aus der Liste der technischen Daten ausgelegt. Dabei muss das Nenndrehmoment (T_{KN}) in allen Fällen über dem maximal zu übertragenden Spitzendrehmoment der Anlage (Beschleunigungs- oder Spitzenmoment) liegen. Dies sollte vor allem bei Einsätzen in Verbindung mit Servomotoren beachtet werden, da deren Beschleunigungsmomente sowohl positiv als auch negativ das Nenndrehmoment um ein Mehrfaches übersteigen können. Bei Werten über T_{KN} (Kollision, Störung) sind nur noch begrenzte Lastwechselzahlen möglich. Die angegebenen Drehmomente T_{KN}/T_{K} max, beziehen sich auf das Lamellenpaket. Die Welle-Nabe-Verbindung ist kundenseitig zu überprüfen.

Benennung	Zeichen	Definition bzw. Erklärung
Nenndrehmoment der Kupplung	T _{KN}	Drehmoment, das im gesamten zulässigen Drehzahlbreich dauernd übertragen werden kann.
Kupplungsmaximal- moment	T _{K max}	Drehmoment, was die Kupplung kurzzeitig (z. B Notaus) übertragen kann. T _K max = 1,5 ● T _{KN}
Spitzendrehmoment der Anlage	TS	Spitzendrehmoment an der Kupplung
Spitzendrehmoment der Antriebsseite	TAS	Spitzendrehmoment bei antriebsseitigem Drehmomentstoß, z. B. Kippmoment des E-Motors.
Spitzendrehmoment der Lastseite	TLS	Spitzendrehmoment bei lastseitigem Drehmomentstoß, z. B. Bremsung
Trägheitsmoment	JA/L	Summe der auf der Antriebs- bzw. Lastseite vorhande- nen Trägheitsmomente bezogen auf die Kupplungs- drehzahl.
Massenfaktor der Antriebsseite	mA	Faktor, der die Massenverteilung bei antriebsseitigem Stoß- und Schwingungserregung berücksichtigt.
Massenfaktor der Lastseite	тL	Faktor, der die Massenverteilung bei lastseitiger Stoß- und Schwingungserregung berücksichtigt.
Reibschlussmoment	T _R	Drehmoment, das durch die reibschlüssige Welle- Nabe-Verbindung übertragen werden kann

Benennung	Zeichen	Definition bzw. Erklärung
max. Motorleistung	P _{max} .	maximale Leistung in kW die der Motor erbringen kann
Motordrehzahl	n	Nenndrehzahl in 1/min des Motors
Verdrehwinkel	ф	Übertragungsfehler in Grad des Metallbalges durch Torsionsbeanspruchung
Torsionssteife	CT	Torsionssteife der Kupplung in Nm/rad, Daten siehe Tabellen auf folgenden Seiten
Erregerfrequenz des 2-Massen-Systems	f _e	in s ⁻¹
Erregerfrequenz des Antriebes	f _r	in s ⁻¹
Betriebsfaktor	k	k= 1,5 bei gleichförmiger Bewegung k= 2,0 bei ungleichförmiger Bewegung k= 2,5 - 4,0 bei stoßender Bewegung Für Antriebe an Werkzeugmaschinen (Servomotoren) sind k-Werte von 1,5 - 2,0 einzusetzten
Schraubenanzugsmo- ment	TA	Anzugsmoment der Schraube


Überschlägige Berechnung

Die Kupplung muss so bemessen sein, dass folgende Bedingung erfüllt ist:

Bei der Auslegung für Servomotoren wird nicht mit Pmax, sondern mit den Drehmomentwerten der Motorlieferanten gerechnet. Bitte verwenden Sie bei der Dimensionierung der Kupplung die entsprechenden Daten des Herstellers unter Berücksichtigung des zu verwendenden Servoreglers.

Berechnung nach Beschleunigungsmoment (Antriebsseitig/Lastseitig)

Überprüfung der Torsionssteife

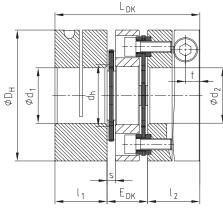
 $\phi = (180 \bullet T_{AS}) / (\pi \bullet C_{T})$

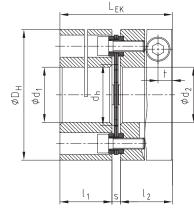
Überprüfung der Resonanzfrequenz

Die Resonanzfrequenz der Kupplung muss über oder unter der Frequenz der Anlage liegen. Für das mechanische Ersatzmodell des 2-Massen-Systems gilt:

 $f_e = 1 / (2 \bullet \pi) \bullet \sqrt{(C_T \bullet ((J_L + J_A) / (J_L \bullet J_A)))}$ [Hz]

In der Praxis sollte gelten: $f_e \ge 2 \bullet f_r$


RADEX®-NC Servolamellenkupplung



Standardbauarten

- Spielfreie Drehmomentübertragung
- Erhöhte Drehsteifigkeit
- Spielfreie Welle-Nabe-Verbindung
- Niedriges Massenträgheitsmoment
- Hohe Drehzahlen
- Einsatztemperatur bis 200 °C
- Kurze Bauform
- Fertigbohrung ab Ø 6 mm wahlweise auch mit Passfedernut nach DIN 6885 Bl. 1 - JS9 erhältlich
- Ex -Schutz beurteilt und bestätigt nach EG-Richtlinie 94/9/EG (ohne Passfeder nur für Kat. 3)

Bauform	nk

Bauform EK

RAD	RADEX®-NC Bauarten DK und EK Naben- und Zwischenstückwerkstoff Aluminium (Gr.									42 Stahl)/	/Lamellen	rostfreier S	Stahl	
Größe		Abmessungen [mm]									chraube	Massenträgheitsmomente		
Grobe	max. d ₁ /d ₂	DH	l ₁ ;l ₂	L _{DK}	EDK	LEK	d _h	S	t	M	T _A [Nm]	DK [kgm²]	EK [kgm²]	
5	12	26	12	34	10	26,5	12	2,5	3,5	M2,5	0,8	0,000004	0,000003	
10	15	35	16	44	12	35	14,5	3	5,0	M4	3	0,000016	0,000012	
15	20	47	21	55	13	45	19,5	3	6,8	M6	10	0,000065	0,000053	
20	25	59	24	67	19	52	24	4	6,5	M6	10	0,000199	0,000154	
25	35	70	32	88	24	69	30	5	9,0	M8	25	0,000508	0,000393	
35	40	84	35	98	28	77	38	7	10,5	M10	49	0,001153	0,000911	
42	55	104	40	116	36	91	48	11	10,5	M10	69	0,007458	0,006153	

	Technische Daten											
Größe	T _{KN} 1)	T _{K max 1)}	max. Drehzahl Drehsteifigkeit [Nm/rad]			Vei	rlagerungen B	auform DK	Verlagerungen Bauform EK			
Grobe	[Nm]	[Nm]	[1/min]	Bauform EK	Bauform DK	radial [mm]	axial [mm]	Winkel je Lamelle [°]	radial [mm]	axial [mm]	Winkel je Lamelle [°]	
5	2,5	5	25000	2400	1200	0,10	0,4	1	_	0,2	1	
10	7,5	15	20000	5600	2800	0,14	0,8	1	_	0,4	1	
15	20	40	16000	12000	6000	0,16	1,0	1	_	0,5	1	
20	30	60	12000	30000	15000	0,25	1,2	1	_	0,6	1	
25	60	120	10000	60000	30000	0,30	1,6	1	_	0,8	1	
35	100	200	9000	72000	36000	0,40	2,0	1	_	1,0	1	
42	180	360	7000	120000	60000	0,50	2,8	1	_	1,4	1	

	Übertragbare Reibschlußmomente T _R [Nm] der Klemmnabe ohne Passfedernut Ausf. 2.5																					
Größe	vorgeb.	Ø3	Ø5	Ø8	Ø10	Ø12	Ø14	Ø15	Ø16	Ø19	Ø20	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø45	Ø50	Ø55
5	2,5	2,2	2,3	2,4	2,5																	
10	4,5		8	9	10	10	11	11														
15	5,5				28	30	31	32	32	34	35											
20	7,5					36	37	38	39	40	41	44	45									
25	9,5							82	83	87	88	93	94	98	100	103	106					
35	11,5									155	157	165	167	173	177	181	187	193	197			
42	15,0											285	287	296	301	307	315	323	329	343	357	370

¹⁾ siehe Seite 177
 Nabenausführung 2.5 = Klemmnabe ohne Passfedernut,
 Nabenausführung 2.6 = Klemmnabe mit Passfedernut

Bestellbeispiel:

RADEX®-NC 20	DK	Ø20	Ø25
Kupplungsgröße	Bauart	Fertigbohrung	Fertigbohrung

Zentrale

MAX LAMB GMBH & CO. KG

Am Bauhof 2 97076 Würzburg

VERTRIEB WÄLZLAGER

Telefon: 0931-2794-210 E-Mail: wlz@lamb.de

VERTRIEB ANTRIEBSTECHNIK

Telefon: 0931-2794-260 E-Mail: ant@lamb.de

Niederlassungen

ASCHAFFENBURG

Schwalbenrainweg 30a 63741 Aschaffenburg Telefon: 06021-3488-0 Telefax: 06021-3488-511 E-Mail: ab@lamb.de

NÜRNBERG

Dieselstraße 18 90765 Fürth

Telefon: 0911-766709-0 Telefax: 0911-766709-611 E-Mail: nb@lamb.de

SCHWEINFURT

Carl-Zeiss-Straße 20 97424 Schweinfurt Telefon: 09721-7659-0 Telefax: 09721-7659-411 E-Mail: sw@lamb.de

STUTTGART

Heerweg 15/A 73770 Denkendorf Telefon: 0711-93448-30 Telefax: 0711-93448-311

E-Mail: st@lamb.de

Ideen verbinden, Technik nutzen